

XC 系列 PLC 扩展模块

用户手册

无锡信捷电气股份有限公司

资料编号: PC 06 20200525 3.4

前言

模块信息概要

模拟量输入模块 XC-E8AD-H

XC 系列

PLC 扩展模块

用户手册

模拟量输入模块 XC-E8AD-B

模拟量输入输出模块 XC-E4AD2DA-H

模拟量输入输出模块 XC-E4AD2DA-B-H

模拟量输入模块 XC-E4AD-H

模拟量输出模块 XC-E4DA-H

模拟量输出模块 XC-E4DA-B-H

模拟量输出模块 XC-E2DA-H

模拟量输入模块 XC-E2AD-H

Pt100 温度 PID 控制模块 XC-E6PT(-P)(-H)

Pt100 温度控制模块 XC-E2PT-H

热电偶温度控制模块 XC-E2TCA-P、XC-E6TCA-P

模拟量与温度混合模块 XC-E3AD4PT2DA-H

模拟量温度混合模块 XC-E2AD2PT2DA

输入输出扩展模块 XC-EnXmY

本手册包含了基本的保证人身安全与保护本产品及连接设备应遵守的注意事项,这些注意事项在手册中以警告三角形加以突出,其他未竟事项请遵守基本的电气操作规程。

WUXI XINJE ELECTRIC CO., LTD. 版权所有

未经明确的书面许可,不得复制、传翻或使用本资料或其中的内容,违者要对造成的损失承担责任。保留包括实用模块或设计的专利许可及注册中提供的所有权力。

责任申明

我们已核对本手册的内容与所叙述的硬件和软件相符,因为差错难免,我们不能保证完全一致。但是,我们会经常对手册的数据进行检查并在以后的编辑中进行必要的更正。欢迎提出 宝贵意见。

二〇一二年九月

目录

前	言		5
1,	模块	信息概要	6
	1-1.	模块型号及配置	7
	1-2.	外形尺寸	8
	1-3.	各部分名称及功能	9
	1-4.	一般规格	
	1-5.	模块的安装	11
	1-6.	XCPPro 中的配置	15
	1-7.	PID 功能简介	16
2、	模拟	量输入模块 XC-E8AD-H	19
	2-1.	模块特点及规格	20
	2-2.	端子说明	
	2-3.	输入输出定义号分配	22
	2-4.	工作模式设定	25
	2-5.	模块外部连接	
	2-6.	模数转换图	29
	2-7.	编程举例	
3、	模拟	量输入模块 XC-E8AD-B	
	3-1.	模块特点及规格	
	3-2.	端子说明	
	3-3.	输入输出定义号分配	
	3-4.	工作模式设定	
	3-5.	模块外部连接	41
	3-6.	模数转换图	
	3-7.	编程举例	
4、	模拟	量输入输出模块 XC-E4AD2DA-H	44
	4-1.	模块特点及规格	45
	4-2.	端子说明	46
	4-3.	输入输出定义号分配	47
	4-5.	外部连接	50
	4-4.	工作模式设定	
	4-6.	模数转换图	55
	4-7.	编程举例	56
5,	模拟	量输入输出模块 XC-E4AD2DA-B-H	57
	5-1.	模块特点及规格	58
	5-2.	端子说明	59
	5-3.	输入输出定义号分配	60
	5-4.	工作模式设定	
	5-5.	外部连接	66
	5-6.	模数转换图	67
	5-7.	编程举例	68
6,	模拟	量输入模块 XC-E4AD-H	69

	6-1.	模块特点及规格	
	6-2.	端子说明	71
	6-3.	输入输出定义号分配	72
	6-4.	工作模式设定	74
	6-5.	模块外部连接	77
	6-6.	模数转换图	
	6-7.	编程举例	
7、	模拟	量输出模块 XC-E4DA-H	80
	7-1.	模块特点及规格	
	7-2.	端子说明	
	7-3.	输入输出定义号分配	
	7-4.	工作模式设定	
	7-5.	外部连接	86
	7-6.	模数转换图	
	7-7.	编程举例	
8,	模拟	量输出模块 XC-E4DA-B-H	89
	8-1.	模块特点及规格	
	8-2.	端子说明	
	8-3.	输入输出定义号分配	92
	8-4.	工作模式设定	
	8-5.	外部连接	
	8-6.	模数转换图	
	8-7.	编程举例	
9,	模拟	量输出模块 XC-E2DA-H	
	9-1.	模块特点及规格	
	9-2.	端子说明	
	9-3.	输入输出定义号分配	100
	9-4.	工作模式设定	
	9-5.	外部连接	103
	9-6.	模数转换图	
	9-7.	编程举例	105
10,	、模扎	【量输入模块 XC-E2AD-H	106
	10-1	. 模块特点及规格	
	10-2	. 端子说明	
	10-3	. 输入输出定义号分配	
	10-4	. 工作模式设定	110
	10-5	. 外部连接	112
	10-6	. 模数转换图	113
	10-7	. 编程举例	114
11	PT1	00 温度控制模块 XC-E6PT(-P)(-H)	115
	11-1	. 模块特点及规格	116
	11-2	. 端子说明	117
	11-3	. 输入输出定义号分配	118
	11-4	. 工作模式设定	121
	11-5	. 外部连接	

	11-6. 编程举例	126
12、	PT100 温度控制模块 XC-E2PT-H	128
	12-1. 模块特点及规格	129
	12-2. 端子说明	130
	12-3. 输入输出定义号分配	131
	12-4. 工作模式设定	132
	12-5. 外部连接	134
	12-6. 程序举例	134
13、	热电偶温度控制模块 XC-E2TCA-P、XC-E6TCA-P	135
	13-1. 模块特点及规格	136
	13-2. 热电偶背景知识介绍	138
	13-2-1. 热电偶概述	138
	13-2-2. 常见热电偶类型	138
	13-3. 端子说明	140
	13-4. 数据地址说明	141
	13-4-1. 工作模式定义	141
	13-4-2. 模块数据地址概述	143
	13-4-3. 相关地址定义	144
	13-5. 模块工作流程及相关原理	147
	13-6. 读写数据指令说明	148
	13-6-1. 指令说明	148
	13-6-2. 指令应用	149
	13-7. 编程举例	152
14,	模拟量温度混合模块 XC-E3AD4PT2DA-H	155
	14-1. 模块特点及规格	156
	14-2. 端子说明	157
	14-3. 输入输出定义号分配	158
	14-4. 工作模式设定	162
	14-5. 外部连接	165
	14-6. 模数转换图	166
	14-7. 编程举例	167
15,	模拟量温度混合模块 XC-E2AD2PT2DA	168
	15-1. 模块特点及规格	169
	15-2. 端子说明	171
	15-3. 数据地址说明	172
	15-3-1. 工作模式定义	172
	15-3-2. 模块数据地址概述	174
	15-3-3. 相关地址定义	176
	15-4. 读写数据指令说明	177
	15-4-1. 指令说明	177
	15-4-2. 指令应用	178
	15-5. 外部连接	181
	15-6. 模数转换图	183
	15-7. 编程举例	184
	给了终于再准计 20 5~2~2	197

16-1.	模块特点及规格	188
16-2.	端子说明	190
16-3.	输入输出定义号分配	191
16-4.	外部连接	197
16-5.	应用举例	199

在现代工程控制项目中,仅仅用 PLC 的 I/O 模块,还不能完全解决问题。因此,PLC 生产 厂家开发了许多特殊功能模块。如模拟量输入模块、模拟量输出模块、高速计数模块、PID 过 程控制调节模块、运动控制模块、通信模块等。有了这些模块,它与 PLC 主机一起连接起来, 构成控制系统单元,使 PLC 的功能越来越强,应用范围越来越广。

本手册主要介绍模拟量模块、温度控制模块、输入输出扩展模块及其他特殊功能模块。

1、模块信息概要

本章介绍 XC 系列扩展模块的型号、外观、一般规格、安装方法、软件配置及 PID 功能介绍。本系列模块适用于 XC3、XC5、XCM 系列部分 PLC 型号。

1-1. 模块型号及配置

1-2. 外形尺寸

1-3. 模块各部分名称及功能

1-4. 一般规格及铭牌说明

1-5. 模块的安装

1-6. XCPPro 中的设置

1-7. PID 功能简介

1-1. 模块型号及配置

XC 系列 PLC 不仅具有强大的逻辑处理、数据运算、高速处理等功能,而且具有 A/D、D/A 转换、PID 调节等功能,通过使用输入输出模块、模拟量模块、温度控制模块等等,使 XC 系列 PLC 在温度、流量、液位、压力等过程控制系统中得到了广泛的应用。

模块型号及功能

型号	功 能
XC-E8AD-H	8 通道模拟量输入模块(14bit);前4路电压,后4路电流
XC-E8AD-B	8 通道模拟量输入模块(14bit);前4路电压,后4路电流,全部为双极性
XC-E4AD2DA-H	4 通道模拟量输入(14bit)、2 通道模拟量输出 (12bit) 模块;
	输入输出电压电流均可选
XC-E4AD2DA-B-H	4 通道模拟量输入(14bit)、2 通道模拟量输出 (12bit) 模块;
	输入电压电流均可选;输出电压
XC-E4AD-H	4 通道模拟量输入模块(14bit); 电流、电压可选
XC-E4DA-H	4 通道模拟量输出模块(12bit); 电流、电压可选
XC-E4DA-B-H	4 通道模拟量输出模块(12bit); 电压输出
XC-E2DA-H	2 通道模拟量输出模块(12bit); 电流、电压可选
XC-E2AD-H	2 通道模拟量输入模块(14bit); 电流、电压可选
XC-E6PT(-P)(-H)	-100~350℃,6通道 Pt100 温度采集模块,精度 0.1 度,含 PID 运算
ХС-Е2РТ-Н	-100~327℃,2通道K型热电偶温度采集模块,精度0.01度
XC-E6TCA-P	0~1000℃或 0~1300℃, 6 通道热电偶温度采集模块,精度 0.1 度,含 PID 运算
XC-E3AD4PT2DA-H	3 通道 14 位精度电流输入、4 通道 PT100 温度输入和 2 通道 10 位精度电压输出
XC-E2AD2PT2DA	2 通道 16 位精度电流输入、2 通道 PT100 温度输入和 2 通道 10 位精度电压输出
XC-EnXmY	n 点输入, m 点输出, 具体请查阅第 15 章节

注: XC-E8AD-B 为带控制位的模拟量输入模块。

模块的配置

XC 系列扩展模块可以安装在 XC 系列 PLC 的主单元、扩展单元、扩展模块和特殊功能模块石边:

	• • • • • • • • • • •	+ CCCCCCCC + CCCCCCCC	0000000 0000000	+ Cercer +	00000000 00000000	00000000000000000000000000000000000000	0000000 0000000
			<i>ars</i> .				
00000000000000000000000000000000000000	COD 0000000 000000000		COCCOCC OCCCOCC	0101010101010	0000000	0000000	

- 输入输出开关量序号为八进制数。
- 输入输出模拟量序号为十进制数。
- PLC本体最多可外接7个扩展模块以及一个BD模块,种类不受限制,可以为输入输出开关量,也可以是模拟量、温度控制模块等。

1-2. 外形尺寸

XC系列模拟量、温度、压力测量、8/16 点输入输出模块的外形及尺寸请参照下图:(单位:mm)

总点数为 32 点的输入输出模块的外形及尺寸请参照下图:

(单位: mm)

1-3. 各部分名称及功能

名 称	功 能
电源指示	当电源接通时该指示灯亮
模块型号	该特殊功能模块的型号
扩展口	连接其他扩展模块
模拟量输入输出端子排	用于连接模拟量输入、输出和外部设备的端子,可拆卸
DIN 导轨挂钩	用于直接安装模块,拆卸时拉下 DIN 导轨拉钩即可
螺钉安装孔	可以在安装孔里旋入螺钉(M3)来完成模块安装
扩展电缆	通过扩展电缆和 PLC 扩展通讯口连接,完成数据传送
铭牌说明	该型号模块的基本参数及出厂信息

1-4. 一般规格

一般规格

项目	规格
使用环境	无腐蚀性气体
环境温度	0°C~60°C
保存环境温度	-20~70°C
环境湿度	5~95%RH
保存环境湿度	5~95%RH
安装	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上

1-5. 模块的安装

安装步骤

安装环境

不要安装在以下环境中:

阳光直射的场所	环境温度超出 0~50℃ 的场所	环境湿度超出 35~85% RH 的场所
		& 203
因温度急剧变化出现结露的场所	有腐蚀性气体和可燃性气体的场所	灰尘、盐分、铁屑、油烟多的场所
直接受到振动和冲击的场所	喷洒水、油、药品等的场所	产生强磁场、强电场的场所
The work		

安装要求

XC 系列模拟量输入输出、温度控制模块可以安装在 XC 系列 PLC 的主单元、扩展单元、 扩展模块和特殊功能模块右边,其安装可以使用 DIN46277 导轨(宽 35mm),或者直接用 M3 螺丝固定。

● 使用 DIN46277 导轨安装:

特殊模块可以安装在 DIN46277 导轨 (宽 35mm)上。要拆除时,只要拉下 DIN 导轨的装 配拉钩,取下模块即可。

● 直接安装:特殊模块也可以通过在安装孔里旋入螺钉(M3)来直接安装。

端子排布线

端子产品的使用

Y 形端子尺寸:

B: Y 形部分的外缘尺寸

- d1: 插入导线部分的外径
- d2: Y 形部分的内缘尺寸(压螺丝部分) L: 全长

合适尺寸:

B: 6mm 以下; L: 13mm 以下; d2: 3.2mm 以下

- 布线方法
- A、断开电源
- B、打开模拟量 I/O 端子排盖

C、将信号线的压接端子安装在规定的端子上,用螺丝刀松开端子螺钉,插入压接端子;接着, 拧紧端子螺钉即可

D、关闭模拟量 I/O 端子排盖

注意事项

- ▶ 请确认规格,选择合适的模块。
- ▶ 进行螺丝孔加工和配线工程时,请不要让切屑、电线屑落入模块内部。
- > 在连线前,请再次确认模块和连接设备的规格,确保没有问题。
- ▶ 在进行连线时,请注意连线是否牢固,连线脱落会造成数据不正确、短路等故障。
- ▶ 安装、配线等作业,必须在切断全部电源后进行。

1-6. XCPPro 中的配置

模块在使用时,首先需要在 PLC 的上位机编程软件 XCPPro 中进行相应的配置,方可正常 使用模块。下面以模块 XC-E8AD-H 为例,说明如何在 XCPPro 中进行配置,步骤如下所示: A、 打开编程软件,在工程栏中找到扩展模块,如下图所示:

- B、在弹出的扩展模块设置对话框中进行相应设置,包括模块型号、工作模式设定等。
 - 模块选择

■ · · · · · · · · · · · · · · · · · · ·	#1 未挂模块 #2 未挂模块	选择模块:		-	取消模块
	*** *** *** *** *** ** ** ** * * * * *		4AD 6AD 6AD-B 2DA 4DA-B 3AD4FT2DA 4AD2DA 4AD2DA-B-H 6FT-F 6FT 6TC-P 6TC-P 6TC-P 6TC-P 6TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P 8TC-P	E	
			GTCA-P 2PT2AD2DA-P 2WT view	Ţ	

■ 设定模块的工作模式,包括每个通道模拟量输入的内容、模拟量大小、是否滤波。

□···□ PLC配置	#1 BD XC-8AD : 8 channel #2 未挂模块	选择模块: 🛛	AD		▼ 取消相	莫块
● PLC 串口	│ ☆ #3 未挂模块 │ ☆ #4 未挂模块	8AD				
CAN CAN		通道1:	电压:	0-10V •	滤波:	1/2滤波 🔻
	#7 未挂模块	通道2:	电压:	0-10V •	滤波:	1/2滤波 🔻
		通道3:	电压:	0-10V 🔹	滤波:	1/2滤波 🔻
───── MA 扩展模块 ──── MA i云和容制参数		通道4:	电压:	0-10V •	滤波:	1/2滤波 👻
THE REAL PROPERTY		通道5:	电流:	0-20mA 👻	滤波:	1/2滤波 👻
		通道6:	电流:	0-20mA 👻	滤波:	1/2滤波 👻
		通道7:	电流:	0-20mA 👻	滤波:	1/2滤波 👻
		通道8:	电流:	0-20mA 🔻	滤波:	1/2滤波 🔻

1-7. PID 功能简介

XC系列 PLC 的 PID 控制有两种:

- (1) 由模拟量扩展模块实现的 PID 控制。主程序向扩展模块写入 PID 控制参数,并控制 其 PID 启停位,实现过程控制。其控制周期为 2 秒,因此比较适合温度等大时延的 控制对象。
- (2) 由 PLC 本体实现的 PID 控制。通过主程序的 PID 控制指令实现过程控制。同时支持 PID 参数自整定功能,可以得到最佳的 PID 参数。应用比较灵活,适合各种控制对象,如温度、压力、流量、液位等。

下面介绍的是通过模拟量扩展模块实现的 PID 控制。

PID 功能简介

XC 系列 PLC 的特殊模块中,温度控制模块具有 PID 控制功能。它用途广泛、使用灵活,使用中只需设定四个参数(Kp、Ki、Kd 和 Diff)即可。

PID 的控制规律如下:

模拟 PID 控制系统原理图

$$\mathbf{e}(\mathbf{t}) = \mathbf{r}(\mathbf{t}) - \mathbf{c}(\mathbf{t}) \tag{1-1}$$

u(t) = Kp [e(t) + 1/Ti je(t)dt + TD de(t)/dt](1-2)

其中, e(t)为偏差, r(t)为给定值, c(t)为模拟量测量值, u(t)为控制量; 式(1-2)中, Kp、Ti、TD分别为比例系数、积分时间系数、微分时间系数。

参数的作用

比例参数(Kp)、积分参数(Ki)、微分参数(Kd)、PID运算范围(Diff)四个参数的作用。 Kp一参数P为比例参数,主要是反映系统的偏差,偏差产生立即进行控制,以减小偏差。 Ki—参数I为积分参数,主要用于消除静差,提高系统无差度。 Kd一参数D为微分参数,主要用于控制信号的变化趋势,减小系统的振荡。 Diff—运算范围是参数,指在指定的范围内进行 PID 控制,范围之外不进行 PID 控制。 Death—死区范围参数,指当前次的 PID 输出值与上次的 PID 输出值比较,如果它们之间的 差值小于设定的死区范围值时,模块将舍弃当前 PID 输出值,还是把上次的 PID 输出值 传送给 PLC 本体。

控制特性

进行 PID 调节的范围就是,当测量值低于 QD-Diff 时,控制器满额输出;当测量值高于 QD+Diff 时,控制器停止输出;当在区间(QD-Diff,QD+Diff)时,进行 PID 调节。

各参数参考值: Kp=20~100; Ki=5~20; Kd=200~800; DIFF=100~200。

PID 调节方法

PID 调节方法有 2 种:

- (1) 开关量输出。通过控制扩展模块上的晶体管输出的占空比来进行调节。XC-E6PT-P 和 XC-E6TC-P 属这种情况。
- (2) 模拟量转开关量输出。模拟量模块有 PID 输出值但不含开关量输出,而控制对象要求开关量输出。此时需要将 PID 输出值转化为 PLC 本体上的输出点占空比输出。 在此情况下,我们除了要设置相应的 PID 参数,还需要编写相应的控制程序,以下 是程序举例:
- PID 输出值转化为开关量输出例程:

在进行模拟量 PID 调节时,模块每2秒输出一个 PID 控制值,因此,在 PLC 程序中, 我们可以利用 PID 输出值与 K4095 比值在2秒内形成的占空比进行控制。设 PID 输出值为 X (0≤X≤4095),在2秒的周期内进行占空比控制,2X/4095 秒控制器输出,(2-2X/4095) 秒控制器关闭输出。如下例所示: 例:

使用注意

对于模拟量模块 XC-E6PT-P、XC-E6TC-P 的 PID 控制部分,则注意以下几点:

- PID 的输出为开关量占空比输出,只控制固态继电器的通断,不能输出模拟量信号。 如果输出是控制阀门开度,或可控硅导通角,则不支持。
- PID 参数需要手工整定。

本体 PID 指令简介

在以下场合,模拟量模块自身的 PID 控制达不到要求,需采用 PLC 本体(硬件 V3.1d 及以上)的 PID 指令来进行控制:

- 压力、流量、液位等反应速度较快的场合,PID的控制周期要求小于2秒。
- 对温度控制精度要求较高,手工调整的 PID 参数达不到要求的场合。在此情况下,需 要通过 PID 自整定的功能得到最佳的 PID 参数。
- 温度控制, PID 输出为模拟量的场合(如控制阀门开度,或可控硅导通角)。

关于 PLC 本体 PID 指令的说明,请参考《XC 系列可编程控制器用户手册【指令篇】》。

2、模拟量输入模块 XC-E8AD-H

本章主要介绍 XC-E8AD-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

2-1. 模块特点及规格

2-2. 端子说明

2-3. 输入定义号分配

2-4. 工作模式设定

2-5. 外部连接

2-6. 模数转换图

2-7. 编程举例

2-1. 模块特点及规格

XC-E8AD-H 模拟量输入模块将 8 点模拟输入数值(电压输入,电流输入)转换成数字值,并且把他们传输到 PLC 主单元。

模块特点

- 8 通道模拟量输入:前4路为电压输入,可以选择0~
 5V、0~10V两种模式;后4路为电流输入,可以选择0~20mA、4~20mA两种模式。
- 14 位的高精度模拟量输入。
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主单元 右边连接 7 台 XC-E8AD 模块。
- XC-E8AD-H 模拟、数字部分电源隔离处理。

模块规格

项目	电压输入(0CH-3CH)	电流输入(4CH-7CH)	
模拟量输入范围	0~5V、0~10V	0~20mA、4~20mA	
最大输入范围	$\pm 15V$	0~40mA	
数字输出范围	14 位二进制数		
分辨率	1/16383 (14Bit)		
综合精确度	1%		
转换速度	20ms/通道		
模拟量用电源	DC24V±10%, 100mA		
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上		
外形尺寸	63mm×102mm×73.3mm		

2-2. 端子说明

端子排布

端子信号

1								
	通道	端子名	信号名					
	CH0	VI0	VI0+电压输入					
		C0	VI0-电压输入					
	CH1	VI1	VI1+电压输入					
		C1	VII-电压输入					
	CH2	VI2	VI2+电压输入					
		C2	VI2-电压输入					
	CH3	VI3	VI3+电压输入					
		C3	VI3-电压输入					
	CH4	AI0	AI0+电流输入					
		C0	AI0-电流输入					
	CH5	AI1	AI1+电流输入					
		C1	AII-电流输入					
	CH6	AI2	AI2+电流输入					
		C2	AI2-电流输入					
	CH7	AI3	AI3+电流输入					
		C3	AI3-电流输入					
	-	24V	+24V 电源					
		0V	电源公共端					

2-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	A/D 信号
0CH	ID100
1CH	ID101
2CH	ID102
3СН	ID103
4CH	ID104
5CH	ID105
6CH	ID106
7CH	ID107

第二扩展模块寄存器定义号

通道	A/D 信号
ОСН	ID200
1CH	ID201
2CH	ID202
ЗСН	ID203
4CH	ID204
5CH	ID205
6CH	ID206
7CH	ID207

第三扩展模块寄存器定义号

通道	A/D 信号
0CH	ID300
1CH	ID301
2CH	ID302
3СН	ID303
4CH	ID304
5CH	ID305
6СН	ID306
7СН	ID307

第四扩展模块寄存器定义号

通道	A/D 信号
0CH	ID400
1CH	ID401
2CH	ID402
ЗСН	ID403
4CH	ID404
5CH	ID405
6CH	ID406
7CH	ID407

第五扩展模块寄存器定义号

通 道	A/D 信号
0CH	ID500
1CH	ID501
2CH	ID502
ЗСН	ID503
4CH	ID504
5CH	ID505
6СН	ID506
7CH	ID507

第六扩展模块寄存器定义号

通道	A/D 信号
ОСН	ID600
1CH	ID601
2CH	ID602
ЗСН	ID603
4CH	ID604
5CH	ID605
6CH	ID606
7CH	ID607

第七扩展模块寄存器定义号

通道	A/D 信号
ОСН	ID700
1CH	ID701
2CH	ID702
ЗСН	ID703
4CH	ID704
5CH	ID705
6CH	ID706
7CH	ID707

2-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器(FD)设置

控制面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

.C1 - 扩展模块 设置 □ · · · · · · · · · · · · · · · · · · ·	1 #1 BD XC-8AD : 8 chann #2 未注模块 #3 未注模块	● 选择模块: ① XC-8AD	C-8AD	2		<u>莫块</u> 3	
BD BD	▲ #4 **注模块 ● #5 未挂模块	通道1:	电压:	0-10V 🗸	. 滤波:	1/2滤波	-
▲ 断电区域保存	□ ₩0 木拴模块 □ #7 未挂模块	通道2:	电压:	0-107 -	· 滤波:	1/2滤波	•
	States - Castronaux	通道3:	电压:	0-107 -	- 滤波:	1/2滤波	•
		通道4:	电压:	0-107 -	. 滤波:	1/2滤波	-
		通道5:	电流:	0-20mA 👻	- 滤波:	1/2滤波	-
		通道6:	电流:	0-20mA 👻	. 滤波:	1/2滤波	•
		通道7:	电流:	0-20mA 👻	. 滤波:	1/2滤波	•
		通道8:	电流:	0-20mA 👻	- 滤波:	1/2滤波	-

第一步: 在图示'2'处选择对应的模块型号;

第二步:完成第一步后,'1'处会显示出对应的型号;

第三步:在'3'处可以选择 AD 通道对应的电压或电流模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

描 拍	通道编号				
医	0CH~3CH	4CH~7CH			
1#模块	FD8250	FD8251			
2#模块	FD8258	FD8259			
3#模块	FD8266	FD8267			
4#模块	FD8274	FD8275			
5#模块	FD8282	FD8283			
6#模块	FD8290	FD8291			
7#模块	FD8298	FD8299			

扩展模块 0CH~3CH 通道有电压 0~5V、0~10V 两种模式可选,4CH~7CH 通道有电流 0~20mA、4~20mA 可选,通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

注意:

如上所示每个寄存器设定 4 个通道的模式,每个寄存器的共有 16 个位,从低到高每 4 个位 依次设置 4 个通道的模式。

以1#模块为例:

FD 的位定义

以第一模块为例,说明设置方式。

寄存器 FD8250:

通道1				通道 0					
Bit7 B	it6 B	it5	Bit4	B	it3	Bit2	Bi	t1	Bit0
00: 1/2 滤	波	-		00:	1/2 波	悲波		-	
01: 不滤液	皮		0: 0~10V	01:	不滤	波			0: 0~10V
10: 1/3 滤	波	-	1: 0~5V	10:	1/3 流	態波		_	1: 0~5V
11: 1/4 滤	波			11:	1/4 涙	息波			
通道 3			通道	i 2					
Bit15 B	it14 B	it13	Bit12	Bit	11	Bit10	В	it9	Bit8
00: 1/2 滤	波	-		00:	1/2 波	悲波		-	
01: 不滤	皮		0: $0 \sim 10V$	01:	不滤	波			0: $0 \sim 10V$
10: 1/3 涟	波	-	1: 0~5V	10:	1/3 流	態波		-	1: 0~5V
11: 1/4 滤	波			11:	1/4 波	患波			

寄存器 FD8251:

通道 5			通道 4		
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
00: 1/2 滤波	-		00: 1/2 滤波	-	
01: 不滤波		0: 0~20mA	01: 不滤波		0: 0~20mA
10: 1/3 滤波	-	1: 4~20mA	10: 1/3 滤波	-	1: 4~20mA
11: 1/4 滤波			11: 1/4 滤波		
通道 7			通道 6		
通道 7 Bit15 Bit14	Bit13	Bit12	通道 6 Bit11 Bit10 日	Bit9	Bit8
通道 7 Bit15 Bit14 00: 1/2 滤波	Bit13 -	Bit12	通道 6 Bit11 Bit10 1 00: 1/2 滤波	Bit9	Bit8
通道 7 Bit15 Bit14 00: 1/2 滤波 01: 不滤波	Bit13	Bit12 0: 0~20mA	通道 6 Bit11 Bit10 1 00: 1/2 滤波 01: 不滤波	Bit9	Bit8 0: 0~20mA
通道 7 Bit15 Bit14 00: 1/2 滤波 01: 不滤波 10: 1/3 滤波	Bit13	Bit12 0: 0~20mA 1: 4~20mA	通道 6 Bit11 Bit10 1 00: 1/2 滤波 01: 不滤波 10: 1/3 滤波	Bit9 - -	Bit8 0: 0~20mA 1: 4~20mA

举例:

- 比如要设置第一个模块的第3、第2、第1、第0通道的工作模式分别为0~10V、0~5V、 0~10V、0~5V,四个通道都不滤波,FD8250中的数值为4545H。
- 比如设置第一个模块的第7、第6、第5、第4 通道的工作模式分别为 0~20mA、4~20mA、 0~20mA、4~20mA, 滤波都为 1/2 滤波, FD8251 中的数值为 0101H。

2-5. 模块外部连接

外部连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。

电压模拟量输入

电流模拟量输入

28

2-6. 模数转换图

输入模拟量与转换的数字量关系如下图所示:

通道0~通道3为电压模式:

通道 4~通道 7 为电流模式:

2-7. 编程举例

例1: 实时读取 XC-E8AD-H 模块的 8 个通道的数据(以1#模块为例)

软件编程:

说明:

M8000 为常 ON 线圈,在 PLC 运行期间一直为 ON 状态;

PLC 开始运行,不断将 1#模块第 0~7 通道的数据分别写入数据寄存器 D0~D7; 寄存器 D0~D7 中的数据即为 XC-E8AD 模块 8 个通道进行实时模数转换的当前值。 **例 2:** PLC 每 100ms 采集一次模拟量输入值,将采集到的 20 位值作平均运算,并不断舍弃最早的值,求出的平均值即为滤波值。

硬件连接:

PLC 主单元

1#模块 XC-E8AD

软件编程:

说明:

- 辅助继电器 M8012 是以 100ms 的频率周期震荡,题目要求每 100ms 采集一次,则用该辅助 继电器的上升沿作为触发条件即可实现。
- 设定在 1#模块位置安装 XC-E8AD,并从 0CH 通道采集信息。
- 设定将采集到当前值存放在寄存器 D470,并按照先后顺序将连续采集到的 20 个数值存放 在寄存器 D530~D549。
- 对 D530~D549 的 20 个数值做求平均值运算,将运算结果保存在寄存器 D580 中,该值即为 滤波值。

滤波效果:

3、模拟量输入模块 XC-E8AD-B

本章主要介绍 XC-E8AD-B 模块的规格、端子说明、输入定义号的分配、工作模式设定、外部连接、模数转换图以及相关编程举例。

3-1. 模块特点及规格

3-2. 端子说明

3-3. 输入定义号分配

3-4. 工作模式设定

3-5. 外部连接

3-6. 模数转换图

3-7. 编程举例

3-1. 模块特点及规格

XC-E8AD-B 模拟量输入模块将 8 点模拟输入数值(电压输入)转换成数字值,并且把他们 传输到 PLC 主单元。

模块规格

项目	电压输入(0CH-3CH)	电流输入(4CH-7CH)		
模拟量输入范围	-5~5V、-10~10V	-20~20mA		
最大输入范围	$\pm 15V$	± 20 mA		
数字输出范围	14 位二进制数	(-8192~+8191)		
分辨率	1/16383 (14Bit)			
综合精确度	1%			
转换速度	20ms/通道			
模拟量用电源	DC24V±10%, 100mA			
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上			
外形尺寸	63mm×102mm×73.3mm			

3-2. 端子说明

端子排布

	0	V	•	•	•	•	•	•	A	2	A	13	
2	4V	•		•	•	•	•	0	6	(27		
	C)	C	1	C	2	C	3	C	4	C	5	
V	10	V	11	٧	12	V	13	Α	0	A	1		

端子信号

通道	端子名	信号名	
CH0	VIO	VI0+电压输入	
	C0	VI0-电压输入	
CH1	VI1	VI1+电压输入	
	C1	VII-电压输入	
CH2	VI2	VI2+电压输入	
	C2	VI2-电压输入	
CH3	VI3	VI3+电压输入	
	C3	VI3-电压输入	
CH4	AI0	AI0+电流输入	
	C4	AI0-电流输入	
CH5	AI1	AI1+电流输入	
	C5	AI1-电流输入	
CH6	AI2	AI2+电流输入	
	C6	AI2-电流输入	
CH7	AI3	AI3+电流输入	
	C7	AI3-电流输入	
-	24V	+24V 电源	
	0V	电源公共端	

3-3. 输入输出定义号分配

XC系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

注意:只有通道启停位置 ON 后,对应通道才能采集到模拟量。

第一扩展模块寄存器定义号

通道	A/D 信号
0CH	ID100
1CH	ID101
2CH	ID102
3CH	ID103

第二扩展模块寄存器定义号

通道	A/D 信号
0CH	ID200
1CH	ID201
2CH	ID202
ЗСН	ID203

第三扩展模块寄存器定义号

通道	A/D 信号
0CH	ID300
1CH	ID301
2CH	ID302
ЗСН	ID303

第四扩展模块寄存器定义号

通道	A/D 信号
0CH	ID400
1CH	ID401
2CH	ID402
3CH	ID403

第五扩展模块寄存器定义号

通道	A/D 信号
0CH	ID500
1CH	ID501
2CH	ID502
3CH	ID503

第六扩展模块寄存器定义号

通道	A/D 信号
0CH	ID600
1CH	ID601
2CH	ID602
ЗСН	ID603

第七扩展模块寄存器定义号

通道	A/D 信号
0CH	ID700
1CH	ID701
2CH	ID702
3CH	ID703

3-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器(FD)设置

控制面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置	1	2
 ■ PLC 配置 ● PLC 串口 ● PLC 串口 ● BD ● OM ○ CAN ● M ● M<td>#1 BD XC-B8AD-B #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块</td><td>选择模块: XC-E6AD-B → 取消模块 XC-E8AD-B 通道1: 通道2: 电压: -10 ~ 10V ↓ 通道3: 电压: -10 ~ 10V ↓ 通道4: 电压: -10 ~ 10V ↓ 3 通道4: 支取PLC</td>	#1 BD XC-B8AD-B #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块	选择模块: XC-E6AD-B → 取消模块 XC-E8AD-B 通道1: 通道2: 电压: -10 ~ 10V ↓ 通道3: 电压: -10 ~ 10V ↓ 通道4: 电压: -10 ~ 10V ↓ 3 通道4: 支取PLC

第一步: 在图示'2'处选择对应的模块型号;

第二步:完成第一步后,'1'处会显示出对应的型号;

第三步:在'3'处可以选择 AD 通道对应的电压输入范围;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后,此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

注意: 电流模式为固定的-20~20mA, 无需在面板上单独设置。

Flash 寄存器设置

齿 拍	通道编号			
医	0CH~3CH	4CH~7CH		
1#模块	FD8250	FD8251		
2#模块	FD8258	FD8259		
3#模块	FD8266	FD8267		
4#模块	FD8274	FD8275		
5#模块	FD8282	FD8283		
6#模块	FD8290	FD8291		
7#模块	FD8298	FD8299		

扩展模块 0CH~3CH 通道有电压 0~5V、0~10V 两种模式可选,4CH~7CH 通道为电流 -20~20mA,通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

注意:

如上所示每个寄存器设定 4 个通道的模式,每个寄存器的共有 16 个位,从低到高每 4 个位 依次设置 4 个通道的模式。

以1#模块为例:

FD 的位定义

以第一模块为例,说明设置方式。

寄存器 FD8250:

	通道 1				通道 0	_
Bit7 Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00: 1/2 滤波	-		00: 1/2 滤	波	-	
01: 不滤波		0: -10~10V	01: 不滤》	支		0: $-10 \sim 10V$
10: 1/3 滤波	-	1: -5∼5V	10: 1/3 滤	波	-	1: -5~5V
11: 1/4 滤波			11: 1/4 滤	波		
	通道3				通道 2	
Bit15 Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
00: 1/2 滤波	-		00: 1/2 滤	波	-	
01: 不滤波		0: -10~10V	01: 不滤》	支		0: -10~10V
10: 1/3 滤波	_	1: -5~5V	10: 1/3 滤	波	-	1: -5~5V
11: 1/4 滤波			11: 1/4 滤	波		

举例:

● 比如要设置第一个模块的第3、第2、第1、第0通道的工作模式分别为-10~10V、-5~5V、-10~10V、-5~5V, 四个通道都不滤波, FD8250 中的数值为4545H。

3-5. 模块外部连接

外部连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。

电压模拟量输入

电流模拟量输入

3-6. 模数转换图

输入模拟量与转换的数字量关系如下图所示:

通道 0~通道 3 为电压模式、通道 4~通道 7 为电流模式:

3-7. 编程举例

例1: 实时读取 XC-E8AD-B 模块的 8 个通道的数据(以1#模块为例)

软件编程:

说明:

M8000 为常 ON 线圈,在 PLC 运行期间一直为 ON 状态;

PLC 开始运行,不断将 1#模块第 0~7 通道的数据分别写入数据寄存器 D0~D7; 寄存器 D0~D7 中的数据即为 XC-E8AD-B 模块 8 个通道进行实时模数转换的当前值。

4、模拟量输入输出模块 XC-E4AD2DA-H

本章主要介绍 XC-E4AD2DA-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

4-1. 模块特点及规格

4-2. 端子说明

4-3. 输入定义号分配

4-4. 工作模式设定

4-5. 外部连接

4-6. 模数转换图

4-7. 编程举例

4-1. 模块特点及规格

XC-E4AD2DA-H 模拟量输入输出模块,将4路模拟输入数值转换成数字值,2路数字量转换成模拟量,并且把他们传输到PLC主单元,且与PLC主单元进行实时数据交互。

AD PRE 101 XC-E4ADDA AT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0

模块特点

- 4 通道模拟量输入:可以选择电压输入和电流输入两 种模式。
- 2通道模拟量输出。
- 14 位的高精度模拟量输入。
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主单元 右边连接 7 台模块。
- XC-E4AD2DA-H 模拟、数字部分电源隔离处理; 电流 输出为拉电流。

模块规格

而日	模拟量输入		模拟	量输出
坝 日	电压输入	电流输入	电压输出	电流输出
模拟量输入范围	0~5V、0~10V	0~20mA, 4~20mA		-
最大输入范围	$DC \pm 15V$	0~40mA		-
			0~5V, 0~10V	0~20mA, 4~20mA
模拟量输出范围		-	(外部负载电	(外部负载电阻
			阻 2KΩ~1MΩ)	小于 500Ω)
数字输入范围	-		12 位二进制]数(0~4095)
数字输出范围	14位二进制数(0~16383)			-
公城玄	1/16383(14Bit);转换数据以16进制		1/4095(12Bit);转	换数据以16进制形
刀が竿	形式存入 PLC(14Bit)		式存入 PLC(12Bit)	
综合精确度	1%			
转换速度	20ms/1 通道		20ms/1 通道 3ms/1 通道	
模拟量用电源	DC24V±10%, 100mA			
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上			
外形尺寸	63mm×102mm×73.3mm			

4-2. 端子说明

端子排布

端子信号

通道	端子名	信号名
CH0	AI0	电流模拟量输入
	VIO	电压模拟量输入
	C0	CH0 模拟量输入公共端
	AI1	电流模拟量输入
CH1	VI1	电压模拟量输入
	C1	CH1 模拟量输入公共端
	AI2	电流模拟量输入
CH2	VI2	电压模拟量输入
	C2	CH2 模拟量输入公共端
	AI3	电流模拟量输入
CH3	VI3	电压模拟量输入
	C3	CH3 模拟量输入公共端
	AO0	电流模拟量输出
CH0	VO0	电压模拟量输出
	C0	CH0 模拟量输出公共端
CH1	AO1	电流模拟量输出
	VO1	电压模拟量输出
	C1	CH1模拟量输出公共端
	24V	+24V 电源
-	0V	电源公共端

46

4-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	AD 信号
0CH	ID100
1CH	ID101
2CH	ID102
3CH	ID103
通道	DA 信号
ОСН	QD100
1CH	QD101

第二扩展模块寄存器定义号

通 道	AD 信号
0CH	ID200
1CH	ID201
2CH	ID202
ЗСН	ID203
通道	DA 信号
ОСН	QD200
1CH	QD201

第三扩展模块寄存器定义号

通道	AD 信号
0CH	ID300
1CH	ID301
2СН	ID302
ЗСН	ID303

通道	DA 信号
0CH	QD300
1CH	QD301

第四扩展模块寄存器定义号

通道	AD 信号
0CH	ID400
1CH	ID401
2CH	ID402
3CH	ID403
通道	DA 信号
ОСН	QD400
1CH	QD401

第五扩展模块寄存器定义号

通 道	AD 信号
0CH	ID500
1CH	ID501
2CH	ID502
3СН	ID503
通道	DA 信号
ОСН	QD500
1CH	QD501

第六扩展模块寄存器定义号

通道	AD 信号
0CH	ID600
1CH	ID601
2CH	ID602
3СН	ID603

通道	DA 信号
0CH	QD600
1CH	QD601

第七扩展模块寄存器定义号

通 道	AD 信号
0CH	ID700
1CH	ID701
2CH	ID702
3СН	ID703
通道	DA 信号
ОСН	QD700
1CH	QD701

4-5. 外部连接

外部连接时,注意以下几个方面:

- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。
- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- XC-E4AD2DA-H 模块输出 0~20mA 或 4~20mA 电流时,模块依据模拟量输出寄存器 QD 数值调节信号回路电流的大小,且电流输出为拉电流,无须外接 24V 电源。

电压单端输入

电压单端输出

注意: XC-E4AD2DA-H 电流输出侧接线如下图所示:

4-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

控制面板配置

将编程软件打开,点击菜单栏的PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置	1	2
□- <u>``</u> PLC配置 <u>···································</u>	 ▲1 BD XC-4AD2DA : 4AD/2 #2 未挂模块 #3 未挂模块 — #4 未挂模块 	D 选择模块:XC-4AD2DA 取消模块 XC-4AD2DA 3
	│ ┈#5 未挂模块 │ ┈#6 未挂模块	AD通道1: 电压 🗸 0-10V 🔻 滤波: 1/2滤波 👻
1 扩展模块	^{[#} 7 禾茳稘块 	AD通道2: 电压 🔻 0-10V 👻 滤波: 1/2滤波 👻
I/O I/O DOD MA 扩展模块		AD通道3: 电压 🔻 0-10V 🔻 滤波: 1/2滤波 👻
M 运动控制参数		AD通道4: 电流 ▼ 0-20mA ▼ 滤波: 1/2滤波 ▼
		DA通道1: 电压 ▼ 0-10V ▼ DA通道2: 电流 ▼ 0-20mA ▼ 0-20mA 4-20mA
	۲ <u>۱۱۱</u> ۱	
		读取r化 写入r化 确定 取消

第一步:在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步:在'3'处可以选择 AD DA 通道对应的电压或电流模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

扩展模块输入输出通道有电压、电流两种模式可选,电流有 0~20mA、4~20mA 可选,电压 有 0~5V、0~10V 可选,其中,0CH~3CH 为模拟量输入通道,4CH~5CH 为模拟量输出通道, 通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

齿 拍	通道编号			
快 伏	0CH~3CH	4CH~5CH		
1#模块	FD8250	FD8251 低字节		
2#模块	FD8258	FD8259 低字节		
3#模块	FD8266	FD8267 低字节		
4#模块	FD8274	FD8275 低字节		
5#模块	FD8282	FD8283 低字节		
6#模块	FD8290	FD8291 低字节		
7#模块	FD8298	FD8299 低字节		

注:如上所示每个寄存器设定4个通道的模式,每个寄存器共有16个位,从低到高每4个位依 次设置4个通道的模式。

以1#模块为例:

FD 的位定义

以第一模块为例,说明设置方式:

寄存器 FD8250:

通道1			通道 0		
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
00: 1/2 滤波	0: 电压输入	0: 0~10V	00: 1/2 滤波	0: 电压输入	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1: 电流输入	0: 0~20mA	10: 1/3 滤波	1: 电流输入	0: 0~20mA
11: 1/4 滤波		1: 4~20mA	11: 1/4 滤波		1: 4~20mA
ふ送っ			汤送 2		
通道 5					
通道 3 Bit15 Bit14	Bit13	Bit12	通道 2 Bit11 Bit10	Bit9	Bit8
通道 3 Bit15 Bit14 00: 1/2 滤波	Bit13 0: 电压输入	Bit12 0: 0~10V	通道 2 Bit11 Bit10 00: 1/2 滤波	Bit9 0: 电压输入	Bit8 0: 0~10V
通道 3 Bit15 Bit14 00: 1/2 滤波 01: 不滤波	Bit13 0: 电压输入	Bit12 0: 0~10V 1: 0~5V	Bit11 Bit10 00: 1/2 滤波 01: 不滤波	Bit9 0:电压输入	Bit8 0: 0~10V 1: 0~5V
通道 3 Bit15 Bit14 00: 1/2 滤波 01: 不滤波 10: 1/3 滤波	Bit13 0:电压输入 1:电流输入	Bit12 0: 0~10V 1: 0~5V 0: 0~20mA	Bit11 Bit10 00: 1/2 滤波 01: 不滤波 10: 1/3 滤波	Bit9 0:电压输入 1:电流输入	Bit8 0: 0~10V 1: 0~5V 0: 0~20mA

寄存器 FD8251 低字节:

通道 5			通道 4		
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
00: 1/2 滤波	0: 电压输出	0: 0~10V	00:1/2 滤波	0: 电压输出	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1: 电流输出	0: 0~20mA	10: 1/3 滤波	1: 电流输出	0: 0~20mA
11: 1/4 滤波		1: 4~20mA	11: 1/4 滤波		1: 4~20mA

例: 要设置第一个模块的输入第 3、第 2、第 1、第 0 通道的工作模式分别为 0~20mA、4~20mA、 0~10V、0~5V, 滤波都为 1/2 滤波, FD8250 中的数值为 2301H。

4-6. 模数转换图

注意: 当输入数据超出 K4095 时, D/A 转换的输出模拟量数据保持 5V、10V 或 20mA 不变。

4-7. 编程举例

例 实时读取4个通道的数据,写入2个通道的数据(以第1个模块为例)

说明:

M8000为常 ON 线圈,在 PLC 运行期间一直为 ON 状态。

PLC 开始运行,不断将 1#模块第 0 通道的数据写入数据寄存器 D0;

第1通道的数据写入数据寄存器 D1;

第2通道的数据写入数据寄存器 D2;

第3通道的数据写入数据寄存器 D3;

数据寄存器 D10 写入数据给输出第 0 通道;

数据寄存器 D11 写入数据给输出第1通道。

5、模拟量输入输出模块 XC-E4AD2DA-B-H

本章主要介绍 XC-E4AD2DA-B-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、外部连接、模数转换图以及相关编程举例。

5-1. 模块特点及规格

5-2. 端子说明

5-3. 输入定义号分配

5-4. 工作模式设定

5-5. 外部连接

5-6. 模数转换图

5-7. 编程举例

5-1. 模块特点及规格

XC-E4AD2DA-B-H 模拟量输入输出模块,将4路模拟输入数值转换成数字值,2路数字量转换成模拟量,并且把他们传输到PLC 主单元,且与PLC 主单元进行实时数据交互。

- 4 通道模拟量输入:可以选择电压输入和电流输入两 种模式。
- 2通道模拟量输出,电压-5~5V、-10~10V可选。
- 14位的高精度模拟量输入。
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主单元 右边连接 7 台模块。
- XC-E4AD2DA-B-H 模拟、数字部分电源隔离处理。

模块规格

而日	模扎	以量输入	模拟量输出	
坝 日	电压输入 电流输入		电压输出	
模拟量输入范围	0~10V、0~5V	0~20mA、4~20mA	-	
最大输入范围	$DC \pm 15V$	0~40mA	-	
档 圳县絵山菇囯			-5~5V、-10~10V	
[[[[]]] [[]] [[]] [[]] [[]] [[]] [[]]	-		(外部负载电阻 2KΩ~1MΩ)	
数字输入范围		-	12 位二进制数(-2048~2047)	
数字输出范围	14 位二进制	J数(0~16383)	-	
八竝玄	1/16383(14Bit);	转换数据以16进制	1/4095(12Bit);转换数据以16进制形	
	形式存)	∖ PLC(14Bit)	式存入 PLC(12Bit)	
综合精确度		1	%	
转换速度	20m	ns/1 通道	3ms/1 通道	
模拟量用电源		DC24V±10	%, 100mA	
安装方式	可用 M3 的蜱	累丝固定或直接安装 在	E DIN46277(宽 35mm)的导轨上	
外形尺寸		63mm×102r	nm×73.3mm	

5-2. 端子说明

端子排布

	0	V		•	0	:0	•	•	C	1		•	
2	4V	(•		•	V	00		•	V	01		
	V	10	0	1	A	11	V	12	C	3	A	3	
	•					• •			- U	•		-	

端子信号

通道	端子名	信号名
	AI0	电流模拟量输入
CH0	VI0	电压模拟量输入
	C0	CH0 模拟量输入公共端
	AI1	电流模拟量输入
CH1	VI1	电压模拟量输入
	C1	CH1 模拟量输入公共端
CH2	AI2	电流模拟量输入
	VI2	电压模拟量输入
	C2	CH2 模拟量输入公共端
	AI3	电流模拟量输入
CH3	VI3	电压模拟量输入
	C3	CH3 模拟量输入公共端
	VO0	电压模拟量输出
CH0	C0	CH0 模拟量输出公共端
	VO1	电压模拟量输出
CH1	C1	CH1 模拟量输出公共端
	24V	+24V 电源
-	0V	电源公共端

5-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	AD 信号
0CH	ID100
1CH	ID101
2CH	ID102
3CH	ID103
通道	DA 信号
0CH	QD100
1CH	QD101

第二扩展模块寄存器定义号

通 道	AD 信号
0CH	ID200
1CH	ID201
2CH	ID202
ЗСН	ID203
通道	DA 信号
ОСН	QD200
1CH	QD201

第三扩展模块寄存器定义号

通道	AD 信号
0CH	ID300
1CH	ID301
2СН	ID302
ЗСН	ID303

通道	DA 信号
0CH	QD300
1CH	QD301

第四扩展模块寄存器定义号

通道	AD 信号
0CH	ID400
1CH	ID401
2CH	ID402
3CH	ID403
通道	DA 信号
ОСН	QD400
1CH	QD401

第五扩展模块寄存器定义号

通 道	AD 信号
0CH	ID500
1CH	ID501
2CH	ID502
3СН	ID503
通道	DA 信号
ОСН	QD500
1CH	QD501

第六扩展模块寄存器定义号

通道	AD 信号
0CH	ID600
1CH	ID601
2CH	ID602
3СН	ID603

通道	DA 信号
0CH	QD600
1CH	QD601

第七扩展模块寄存器定义号

通道	AD 信号
0CH	ID700
1CH	ID701
2CH	ID702
ЗСН	ID703
通道	DA 信号
ОСН	QD700
1CH	QD701

5-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

控制面板配置

将编程软件打开,点击菜单栏的PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置	E						
PLC1 - 扩展模块 设置 ● PLC配置 ● PLC配置 ● PLC 串口 ● PLC 串口 ● BD • M Kalk • M Kalk	选择模: XC-4AD2DA- AD通道1: AD通道2: AD通道3: AD通道3: AD通道4: DA通道1 DA通道1	XC-4AD2DA B-H 电压 V 电压 V 电压 V 电压 L	Б-Н О-10V V О-10V V О-10V V О-10V V -10 ~ 10V V -10 ~ 10V V	2. 取消積 滤波: 滤波: 滤波: 滤波:	は 1/2滤波 へ 1/2滤波 へ 1/2滤波 へ 1/2滤波 へ	3	
		1)A(<u>H</u>) <u>H</u> 2	电压: 读取PI	- <u>10 104 с</u> с <u></u>	5	确定	取消

第一步:在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步:在'3'处可以选择 AD DA 通道对应的电压或电流模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后,此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

扩展模块输入通道有电压、电流两种模式可选,电流 0~20mA、4-20mA,电压 0~10V、0~5V; 输出通道有电压-10~10V、-5~5V 模式可选,其中,0CH~3CH 为模拟量输入通道,4CH~5CH 为模拟量输出通道,通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

模 块	通道编号			
	0CH~3CH	4CH~5CH		
1#模块	FD8250	FD8251 低字节		
2#模块	FD8258	FD8259 低字节		
3#模块	FD8266	FD8267 低字节		
4#模块	FD8274	FD8275 低字节		
5#模块	FD8282	FD8283 低字节		
6#模块	FD8290	FD8291 低字节		
7#模块	FD8298	FD8299 低字节		

注:如上所示每个寄存器设定4个通道的模式,每个寄存器共有16个位,从低到高每4个位依 次设置4个通道的模式。

以1#模块为例:

FD 的位定义

以第一模块为例,说明设置方式:

寄存器 FD8250:

通道1			通道0		
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
00: 1/2 滤波	0: 电压输入	0: 0~10V	00: 1/2 滤波	0: 电压输入	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1: 电流输入	0: 0~20mA	10: 1/3 滤波	1: 电流输入	0: 0~20mA
11: 1/4 滤波		1: 4~20mA	11: 1/4 滤波		1: 4~20mA
通道 3			通道 2		
Bit15 Bit14	Bit13	Bit12	Bit11 Bit10	Bit9	Bit8
00: 1/2 滤波	0: 电压输入	0: 0~10V	00: 1/2 滤波	0: 电压输入	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1: 电流输入	0: 0~20mA	10: 1/3 滤波	1: 电流输入	0: 0~20mA
11: 1/4 滤波		1: 4~20mA	11: 1/4 滤波		1: 4~20mA

寄存器 FD8251 低字节:

通道 5			通道 4			
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2 H	Bit1	Bit0	
00: 1/2 滤波	-	0: -10~10V	00:1/2 滤波	-	0: -10~10V	
01: 不滤波		1: -5~5V	01: 不滤波		1: -5~5V	
10: 1/3 滤波			10: 1/3 滤波			
11: 1/4 滤波			11: 1/4 滤波			

例: 要设置第一个模块 (XC-E4AD2DA-B-H),其模拟量输入第3通道、第2通道、第1通道、第0通道的工作模式分别为0~20mA、4~20mA、0~10V、0~5V,滤波都为1/2滤波,FD8250 中的数值为 2301H (十六进制)。

5-5. 外部连接

外部连接时,注意以下几个方面:

- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。
- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。

5-6. 模数转换图

输入模拟量与转换的数字量关系如下表所示:

输出的数字量与其对应的模拟量数据的关系如下表所示:

注意:当输入数据超出 K2047 时, D/A 转换的输出模拟量数据保持 10V 不变。

5-7. 编程举例

例 实时读取4个通道的数据,写入2个通道的数据(以第1个模块为例)

说明:

M8000为常 ON 线圈,在 PLC 运行期间一直为 ON 状态。

PLC 开始运行,不断将 1#模块第 0 通道的数据写入数据寄存器 D0;

第1通道的数据写入数据寄存器 D1;

第2通道的数据写入数据寄存器 D2;

第3通道的数据写入数据寄存器 D3;

数据寄存器 D10 写入数据给输出第 0 通道;

数据寄存器 D11 写入数据给输出第1通道。
6、模拟量输入模块 XC-E4AD-H

本章主要介绍 XC-E4AD-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

6-1. 模块特点及规格

6-2. 端子说明

6-3. 输入定义号分配

6-4. 工作模式设定

6-5. 外部连接

6-6. 模数转换图

6-7. 编程举例

6-1. 模块特点及规格

XC-E4AD-H 模拟量输入输出模块(以下简称为 XC-E4AD),将 4 点模拟输入数值(电压输入,电流输入)转换成数字值,并且把他们传输到 PLC 主单元。

模块特点

- 4 通道模拟量输入:可以选择电压输入和电流输入两种模式,其中电压输入有0~5V、0~10V,电流输入有0~20mA、4~20mA两种模式。
- 14位的高精度模拟量输入。
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主单 元右边连接 7 台 XC-E4AD 模块。
- XC-E4AD-H 模拟、数字部分电源隔离处理。

模块规格

而日	模拟量输入(AD)		
坝 日	电压输入	电流输入	
模拟量输入范围	DC0~5V、0~10V	DC0~20mA, 4~20mA	
最大输入范围	$DC \pm 18V$	DC0~40mA	
模拟量输出范围	-		
数字输入范围	-		
数字输出范围	14 位二进制数(0~16383)		
分辨率	1/16383(14Bit);转换数据以16进制形式存入PLC(14Bit)		
综合精确度	0.8%		
转换速度	20ms/1 通道		
模拟量用电源	DC24V±10%, 100mA		
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上		
外形尺寸	63mm×102mm×73.3mm		

6-2. 端子说明

模块信号

通道	端子名	信号名	
	AI0	电流模拟量输入	
CH0	VIO	电压模拟量输入	
	C0	CH0 模拟量输入公共端	
	AI1	电流模拟量输入	
CH1	VI1	电压模拟量输入	
	C1	CH1 模拟量输入公共端	
CH2	AI2	电流模拟量输入	
	VI2	电压模拟量输入	
	C2	CH2 模拟量输入公共端	
	AI3	电流模拟量输入	
CH3	VI3	电压模拟量输入	
	C3	CH3 模拟量输入公共端	
	24V	+24V 电源	
-	0V	电源公共端	

6-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	AD 信号
0CH	ID100
1CH	ID101
2CH	ID102
ЗСН	ID103

第二扩展模块寄存器定义号

通 道	AD 信号
0CH	ID200
1CH	ID201
2CH	ID202
3СН	ID203

第三扩展模块寄存器定义号

通道	AD 信号
0CH	ID300
1CH	ID301
2CH	ID302
ЗСН	ID303

第四扩展模块寄存器定义号

通道	AD 信号
0CH	ID400
1CH	ID401
2CH	ID402
3СН	ID403

第五扩展模块寄存器定义号

通道	AD 信号
0CH	ID500
1CH	ID501
2CH	ID502
3CH	ID503

第六扩展模块寄存器定义号

通 道	AD 信号
0CH	ID600
1CH	ID601
2CH	ID602
ЗСН	ID603

第七扩展模块寄存器定义号

通 道	AD 信号
0CH	ID700
1CH	ID701
2CH	ID702
ЗСН	ID703

6-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

控制面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

□- 🔁 PLC配置 - 📾 密码 - 🛥 密凸 - 🛥 PLC 串口	 ▲1 BD XC-4AD : 4AD (0 #2 未挂模块 #3 未挂模块 #4 未挂模块 	-10) 选择模块: XC-4AD	IXC-4AD			肖模块 3	
	#5 未挂模块 #6 未挂模块 #7 未挂模块	AD通道1:	电压 🔹	0-10V	• 滤波:	1/2滤波	•
	THE PROPERTY OF	AD通道2: AD诵道3:	电压▼	0-10V	 ▼ 滤波: ▼ 滤波: 	1/2滤波 1/2滤波	
		AD通道4:	电流 ▼	0-20mA	 ● 滤波: 	1/2滤波	•
	<	•					
	•	▶ 凌mpic	EAL	arc D	福完	T HO	<u>当</u>

第一步: 在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步:另外在'3'处可以选择 AD 通道对应的电压或电流模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

扩展模块输入有电压 0~5V、0~10V,电流 0~20mA、4~20mA 模式可选,通过 PLC 内部的 特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

擂井	通道编号
医坏	0CH~3CH
1#模块	FD8250
2#模块	FD8258
3#模块	FD8266
4#模块	FD8274
5#模块	FD8282
6#模块	FD8290
7#模块	FD8298

注:如上所示每个寄存器设定4个通道的模式,每个寄存器的共有16个位,从低到高每4个位 依次设置4个通道的模式。

以1#模块为例

FD 的位定义

以第一模块为例,说明设置方式:

寄存器 FD8250:

通道1			通道 0		
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
00: 1/2 滤波	0: 电压输入	0: 0~10V	00: 1/2 滤波	0: 电压输入	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1: 电流输入	0: 0~20mA	10: 1/3 滤波	1: 电流输入	0: 0~20mA
11: 1/4 滤波		1: 4~20mA	11: 1/4 滤波		1: 4~20mA
通道 3			通道 2		-
Bit15 Bit14	Bit13	Bit12	Bit11 Bit10	Bit9	Bit8
00: 1/2 滤波	0: 电压输入	0: 0~10V	00: 1/2 滤波	0: 电压输入	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1 山海桧)	0 0~20m1	10: 1/3 滤波	 由 流 输 λ 	0. $0 \sim 20 \text{m} \Lambda$
	1: 电弧制八	$0: 0' \sim 20$ mA		1: 电机制八	0: 0 20mA

例:要设置第一个模块的输入第 3、第 2、第 1、第 0 通道的工作模式分别为 0~20mA、4~20mA、 0~10V、0~5V,滤波都为 1/2 滤波, FD8250 中的数值为 2301H。

6-5. 模块外部连接

外部连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。

电压单端输入

6-6. 模数转换图

输入模拟量与转换的数字量关系如下表所示:

6-7. 编程举例

例 实时读取4个通道的数据(以第1个模块为例)

M8000				
		MOV	ID100	D0
		MOV	ID101	D1
		MOV	ID102	D2
		MOV	ID103	D3
END				

说明**:**

M8000 为常 ON 线圈,在 PLC 运行期间一直为 ON 状态。

PLC 开始运行,不断将 1#模块第 0 通道的数据写入数据寄存器 D0;

第1通道的数据写入数据寄存器 D1;

第2通道的数据写入数据寄存器 D2;

第3通道的数据写入数据寄存器 D3。

7、模拟量输出模块 XC-E4DA-H

本章主要介绍 XC-E4DA-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

7-1. 模块特点及规格

7-2. 端子说明

7-3. 输入定义号分配

7-4. 工作模式设定

7-5. 外部连接

7-6. 模数转换图

7-7. 编程举例

7-1. 模块特点及规格

XC-E4DA-H 模拟量输出模块将 12 位数字值转换成电压、电流值输出。

模块特点

- 4 通道模拟量输出:可以选择电压输出和电流输出两种模式,其中电压输出有 0~5V、0~10V,电流输出有 0~20mA、4~20mA两种模式。
- 12位的高精度模拟量输出。
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主单元 侧连接 7 台模块。
- XC-E4DA-H 的模拟、数字部分电源隔离处理; 电流 输出为拉电流。

模块规格

项目	电压输出	电流输出		
描 拟	DC0~5V、0~10V	DC0~20mA、4~20mA		
候1以里相山氾団	(外部负载电阻 2KΩ~1MΩ)	(外部负载电阻小于 500Ω)		
数字输入范围	12 位二进制数			
分辨率	1/4095(12Bit);转换数据以16进制形式存入PLC(12Bit)			
综合精确度	0.8%			
转换速度	3ms/1 通道			
模拟量用电源	DC24V±10%, 100mA			
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277(宽 35mm)的导轨上			
外型尺寸	63mm×102mm×73.3mm			

7-2. 端子说明

端子排布

模块信号

通道	端子名	信号名				
	AO0	电流模拟量输出				
CH0	VO0	电压模拟量输出				
	C0	CH0 模拟量输出公共端				
	AO1	电流模拟量输出				
CH1	VO1	电压模拟量输出				
	C1	CH1 模拟量输出公共端				
	AO2	电流模拟量输出				
CH2	VO2	电压模拟量输出				
	C2	CH2 模拟量输出公共端				
	AO3	电流模拟量输出				
CH3	VO3	电压模拟量输出				
	C3	CH3 模拟量输出公共端				
	24V	+24V 电源				
-	0V	电源公共端				

7-3. 输入输出定义号分配

XC系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

通道号	一号单元	二号单元	三号单元	四号单元	五号单元	六号单元	七号单元
0CH	QD100	QD200	QD300	QD400	QD500	QD600	QD700
1CH	QD101	QD201	QD301	QD401	QD501	QD601	QD701
2CH	QD102	QD202	QD302	QD402	QD502	QD602	QD702
3CH	QD103	QD203	QD303	QD403	QD503	QD603	QD703

7-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

控制面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息。

PLC1 - 扩展模块 设置 PLC配置 	1 #2 BD XC-4DA : 4 channe ^D #2 未挂模块 #3 未挂模块 #5 未挂模块 #6 未挂模块 #6 未挂模块 #7 未挂模块	2 选择模块: (XC-4DA 取消模块 XC-4DA 3 DA通道1: 电压 ● 0-10V ● DA通道2: 电压 ● 0-10V ● DA通道3: 电压 ● 0-10V ● DA通道4: 电流 ● 0-20mA ● 0-20mA ● 4-20mA
	< <u>III.</u> >	读wflc 写入flc 确定 取消

第一步: 在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步:在'3'处可以选择 DA 通道对应的电压或电流模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

→ 2CH → 3CH

Flash 寄存器设置

扩展模块 0CH~3CH 通道有电压输出、电流输出两种模式可选,电压输出有 0~5V、0~10V 可选, 电流输出有 0~20mA、4~20mA 可选, 通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行 设置。如下所示:

齿拍	通道编号			
快坏	0CH~3CH			
1#模块	FD8250			
2#模块	FD8258			
3#模块	FD8266			
4#模块	FD8274			
5#模块	FD8282			
6#模块	FD8290			
7#模块	FD8298			

注:如上所示每个寄存器设定4个通道的模式,每个寄存器的共有16个位,从低到高每4个位 依次设置4个通道的模式。

以1#模块为例:	FD8250	Η	0	0	0	0		
								• 0CH
								• 1CH
				L				• 2CH

FD 的位定义

以第一模块为例,寄存器 FD8250:

通道1				通道 0			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		0: 电压输出	0: 0~10V			0: 电压输出	0: 0~10V
-			1: 0~5V	-			1: 0~5V
		1: 电流输出	0: 0~20mA			1: 电流输出	0: 0~20mA
			1: 4~20mA				1: 4~20mA
通道3				通道 2			
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
		0: 电压输出	0: 0~10V			0: 电压输出	0: 0~10V
-			1: 0~5V	-			1: 0~5V
		1: 电流输出	0: 0~20mA			1: 电流输出	0: 0~20mA
			1: 4~20mA				1: 4~20mA

7-5. 外部连接

外部连接时,注意以下几个方面:

- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。
- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- XC-E4DA-H 模块输出 0~20mA 或 4~20mA 电流时,模块依据模拟量输出寄存器 QD 数值 调节信号回路电流的大小,且电流输出为拉电流,无须外接 24V 电源。

电压输出型 24V OV -00V +00/ õ ó \bigcirc Ð x Û 52 (42) (42) (52 OV C0 A00 24V V00 ٠

注意: XC-E4DA-H 电流输出侧接线如下图所示:

7-6. 模数转换图

模块输出的数字量与其对应的模拟量数据的关系如下图所示:

注意: 当输入数据超出 K4095 时, D/A 转换的输出模拟量数据保持 5V、10V 或 20mA 不变。

7-7. 编程举例

例 实时写入4个通道的数据

8、模拟量输出模块 XC-E4DA-B-H

本章主要介绍 XC-E4DA-B-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

8-1. 模块特点及规格

8-2. 端子说明

8-3. 输入定义号分配

8-4. 工作模式设定

8-5. 外部连接

8-6. 模数转换图

8-7. 编程举例

8-1. 模块特点及规格

XC-E4DA-B-H 模拟量输出模块,将 12 位数字值转换成电压输出。

) () () () () () () () () () () () () ()
ХС-Е4DA-B-H АО

模块特点

- 4 通道模拟量电压输出: 有-5V~5V、-10V~10V;
- 12 位的高精度模拟量输出;
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主单 元侧连接 7 台模块;
- XC-E4DA-B-H的模拟、数字部分电源隔离处理。

模块规格

项目	电压输出
- - - - - - - - - - - - - -	DC-5V~5V、-10V~10V
医14里 11 12 12 13	(外部负载电阻 2KΩ~1MΩ)
数字输入范围	12 位二进制数
分辨率	1/4095(12Bit);转换数据以16进制形式存入PLC(12Bit)
综合精确度	1%
转换速度	3ms/1 通道
模拟量用电源	DC24V±10%, 100mA
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277(宽 35mm)的导轨上
外型尺寸	63mm×102mm×73.3mm

8-2. 端子说明

端子排布

模块信号

通道	端子名	信号名
	VO0	电压模拟量输出
CH0	C0	CH0 模拟量输出公共端
	VO1	电压模拟量输出
CH1	C1	CH1 模拟量输出公共端
	VO2	电压模拟量输出
CH2	C2	CH2 模拟量输出公共端
	VO3	电压模拟量输出
CH3	C3	CH3 模拟量输出公共端
	24V	+24V 电源
-	0V	电源公共端

8-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

通道号	一号单元	二号单元	三号单元	四号单元	五号单元	六号单元	七号单元
0CH	QD100	QD200	QD300	QD400	QD500	QD600	QD700
1CH	QD101	QD201	QD301	QD401	QD501	QD601	QD701
2CH	QD102	QD202	QD302	QD402	QD502	QD602	QD702
3CH	QD103	QD203	QD303	QD403	QD503	QD603	QD703

8-4. 工作模式设定

工作模式的设定有两种方法可选:(这2种方式的效果是等价的)

- 1、通过设置面板配置
- 2、通过 Flash 寄存器(FD)设置

控制面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息。

PLC1 - 扩展模块 设置		2	×
 ■ PLC配置 ● SGH ● PLC 串口 ● BD ● CAN ○ CAN ○ M ER長块 ● TO ● DO ● MA 扩展模块 ● M 运动控制参数 	#1 BD XC-4DA-B #2 <u>非挂模块</u> #4 <u>非挂模块</u> #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块	採快 4DA-B DA通道1 电压: -10 ~ 10V ▼ DA通道2 电压: -10 ~ 10V ▼ DA通道3 电压: -10 ~ 10V ▼ DA通道4 电压: -10 ~ 10V ▼	8複块
		读取PLC 写入PLC	确定即消

第一步:在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步: 另外在 '3' 处可以选择 DA 通道对应的电压模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

扩展模块 0CH~3CH 通道有电压输出-5~5V、-10~10V 可选,通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

措 扫	通道编号				
陕坎	0CH~3CH				
1#模块	FD8250				
2#模块	FD8258				
3#模块	FD8266				
4#模块	FD8274				
5#模块	FD8282				
6#模块	FD8290				
7#模块	FD8298				

注:如上所示每个寄存器设定4个通道的模式,每个寄存器的共有16个位,从低到高每4个位 依次设置4个通道的模式。

以1#模块为例: FD8250 H 0 0 0 0

FD 的位定义

以第一模块为例,寄存器 FD8250:

通道 0 通道 1 选择-10~10V 电压输出, 第 2 第 3 通道选择-5~5V 电压输出,则 FD8250=H1100。

通道1			通道 0				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			0: -10~10V				0: -10~10V
-		-	1: -5~5V	-		-	1: -5~5V
通道 3		通道2					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
			0: -10~10V				0: -10~10V
-		-	1: -5~5V	-		-	1: -5~5V

8-5. 外部连接

外部连接时,注意以下几个方面:

- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。
- XC-E4DA-B-H 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。

电压输出型

8-6. 模数转换图

模块输出的数字量与其对应的模拟量数据的关系如下图所示:

注意:当输入数据超出 K-2048~K2047 时, D/A 转换的输出模拟量数据保持 5V 或 10V 不变。

8-7. 编程举例

例 实时写入4个通道的数据。

9、模拟量输出模块 XC-E2DA-H

本章主要介绍 XC-E2DA-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

9-1. 模块特点及规格

9-2. 端子说明

9-3. 输入定义号分配

9-4. 工作模式设定

9-5. 外部连接

9-6. 模数转换图

9-7. 编程举例

9-1. 模块特点及规格

XC-E2DA-H 模拟量输出模块将 12 位数字值转换成电压、电流值输出。

- 模块特点
- 2通道模拟量输出:可以选择电压输出和电流输出 两种模式,其中电压输出 0~5V、0~10V,电流 输出 0~20mA、4~20mA;
- 12位的高精度模拟量输出;
- 作为 XC 系列的特殊功能模块,最多可在 PLC 主 单元侧连接 7 台模块;
- XC-E2DA-H 的模拟、数字部分电源隔离处理; 电 流输出为拉电流。

模块规格

项目	电压输出	电流输出	
描拟导於山英国	DC0~5V、0~10V	DC0~20mA、4~20mA	
医14里相山阳田	(外部负载电阻 2KΩ~1MΩ)	(外部负载电阻小于 500Ω)	
数字输入范围	12 位二	二进制数	
分辨率	1/4095(12Bit);转换数据以16进制形式存入PLC(12Bit)		
综合精确度	1%		
转换速度	3ms/1 通道		
模拟量用电源	DC24V±10%, 100mA		
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上		
外形尺寸	63mm×102mm×73.3mm		

9-2. 端子说明

端子排布

模块信号

通道	端子名	信号名
	AO0	电流模拟量输出
CH0	VO0	电压模拟量输出
	C0	CH0 模拟量输出公共端
	AO1	电流模拟量输出
CH1	VO1	电压模拟量输出
	C1	CH1 模拟量输出公共端
24V		+24V 电源
-	0V	电源公共端

9-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

通道号	一号单元	二号单元	三号单元	四号单元	五号单元	六号单元	七号单元
0CH	QD100	QD200	QD300	QD400	QD500	QD600	QD700
1CH	QD101	QD201	QD301	QD401	QD501	QD601	QD701

9-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

配置面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块

之后出现以下配置面板,选择对应的模块型号和配置信息。

PLC1 - 扩展模块 设置	1	2	×
 PLC配置 ● 一 ● 密码 ● PLC 串口 ● BD ● CAN ● CAN	 #1 BD XC-2DA : 2 channel #2 未捏模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块 	选择模块: XC-2DA → 取消模块 XC-2DA 3 DA通道1: 电压 • 0-10V • 3 DA通道2: 电流 • 4-20mA • 0-20mA 4-20mA	
		读取PLC 写入PLC 确定 取消	Ĭ

第一步:在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步: 在'3'处可以选择 DA 通道对应的电压或电流模式;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

扩展模块输出有电压 0~5V、0~10V,电流 0~20mA、4~20mA 模式可选,通过 PLC 内部的 特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

齿拍	通道编号		
医坏	0CH~1CH		
1#模块	FD8250		
2#模块	FD8254		
3#模块	FD8258		
4#模块	FD8262		
5#模块	FD8264		
6#模块	FD8268		
7#模块	FD8272		

注: 如上所示每个寄存器设定 2 个通道的模式,每个寄存器的共有 16 个位,从低到高每 4 个位 依次设置 2 个通道的模式。

以1#模块为例:

FD 的位定义

以第一模块为例,说明设置方式:

寄存器 FD8250:

通道1			通道 0				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		0: 电压输出	0: 0~10V			0: 电压输出	0: 0~10V
-			1: 0~5V	-			1: 0~5V
		1: 电流输出	0: 0~20mA			1: 电流输出	0: 0~20mA
			1: 4~20mA				1: 4~20mA

9-5. 外部连接

外部连接时,注意以下三个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。

电压输出型

电流输出型

注: XC-E2DA-H 模块选择电流输出时,为拉电流工作模式,不需要由外部提供 24V 电源,接 线如下图所示:

9-6. 模数转换图

PLC 输出的数字量与其对应的模拟量数据的关系如下图所示:

注意: 当输入数据超出 K4095 时, D/A 转换的输出模拟量数据保持 5V、10V 或 20mA 不变。
9-7. 编程举例

例 实时写入2个通道的数据

10、模拟量输入模块 XC-E2AD-H

本章主要介绍 XC-E2AD-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、 外部连接、模数转换图以及相关编程举例。

10-1. 模块特点及规格

10-2. 端子说明

10-3. 输入定义号分配

10-4. 工作模式设定

10-5. 外部连接

10-6. 模数转换图

10-7. 编程举例

10-1. 模块特点及规格

XC-E2AD-H 模拟量输入模块,将2点模拟输入数值(电压输入,电流输入)转换成数字值,并且把他们传输到 PLC 主单元。

模块规格

西日	模拟量输入(AD)		
坝 日	电压输入	电流输入	
模拟量输入范围	DC0~5V, 0~10V	DC0~20mA、4~20mA	
最大输入范围	$DC \pm 18V$	DC0~40mA	
模拟量输出范围	-		
数字输入范围	-		
数字输出范围	14 位二进制数 (0~16383)		
分辨率	1/16383(14Bit);转换数据以16进制形式存入PLC(14Bit)		
综合精确度	0.8%		
转换速度	20ms/1 通道		
模拟量用电源	DC24V±10%, 100mA		
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上		
外形尺寸	63mm×102mm×73.3mm		

10-2. 端子说明

端子排布

模块信号

通道	端子名	信号名
	AI0	电流模拟量输入
CH0	VI0	电压模拟量输入
	C0	CH0 模拟量输入公共端
	AI1	电流模拟量输入
CH1	VI1	电压模拟量输入
	C1	CH1 模拟量输入公共端
	24V	+24V 电源
-	0V	电源公共端

10-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	AD 信号	
0CH	ID100	
1CH	ID101	

第二扩展模块寄存器定义号

通道	AD 信号	
0CH	ID200	
1CH	ID201	

第三扩展模块寄存器定义号

通道	AD 信号	
0CH	ID300	
1CH	ID301	

第四扩展模块寄存器定义号

通道	AD 信号	
0CH	ID400	
1CH	ID401	

第五扩展模块寄存器定义号

通道	AD 信号	
0CH	ID500	
1CH	ID501	

第六扩展模块寄存器定义号

通道	AD 信号	
0CH	ID600	
1CH	ID601	

第七扩展模块寄存器定义号

通道	AD 信号	
0CH	ID700	
1CH	ID701	

10-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

控制面板配置

将编程软件打开,点击菜单栏的PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

	 ▲1 BD XC-4AD : 4AD (0 ₩2 未挂模块 ₩3 未挂模块 ₩4 未挂模块 	-10) 选择模块: XC-4AD	IXC-4AD) W	消模块 3	
	#5 未挂模块 #6 未挂模块	AD通道1:	电压	• 0-10V	• 滤波:	1/2滤波	•
100 扩展模块		AD通道2:	电压 、	• 0-10V	▼ 滤波:	1/2滤波	•
		AD通道3:	电压	• 0-10V	• 滤波:	1/2滤波	•
▲ 运动控制参数		AD <u>通</u> 道4:	电流 🔹	• 0-20mA	• 滤波:	1/2滤波	•
	<	Þ					
	•						
		读取PLC		(PLC)	确定	即	消

第一步:在图示 '2'处选择对应的模块型号;(注:XC-E2AD 配置同 XC-E4AD,此处选 XC-4AD 即可。)

第二步:完成第一步后'1'处会显示出对应的型号;

第三步:另外在'3'处可以选择 AD 通道对应的电压或电流模式;(注:只需配置前两路) 第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程 序后,此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

扩展模块输入有电压 0~5V、0~10V, 电流 0~20mA、4~20mA 模式可选, 通过 PLC 内部的 特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

枯井	通道编号
医坏	0CH~1CH
1#模块	FD8250
2#模块	FD8258
3#模块	FD8266
4#模块	FD8274
5#模块	FD8282
6#模块	FD8290
7#模块	FD8298

注:如上所示每个寄存器设定 2 个通道的模式,每个寄存器的共有 16 个位,从低到高每 4 个位 依次设置 2 个通道的模式。

以1#模块为例:

FD 的位定义

以第一模块为例,说明设置方式:

寄存器 FD8250:

通道1		通道 0			
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2	Bit1	Bit0
00: 1/2 滤波	0: 电压输入	0: 0~10V	00: 1/2 滤波	0: 电压输入	0: 0~10V
01: 不滤波		1: 0~5V	01: 不滤波		1: 0~5V
10: 1/3 滤波	1: 电流输入	0: 0~20mA	10: 1/3 滤波	1: 电流输入	0: 0~20mA
11: 1/4 滤波		1: 4~20mA	11: 1/4 滤波		1: 4~20mA

例:要设置第一个模块的输入第1、第0通道的工作模式分别为4~20mA、0~10V,滤波都为 1/2 滤波,FD8250 中的数值为0300H。

10-5. 外部连接

外部连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,请使用屏蔽线,并对屏蔽层单点接地。

电压单端输入

电流单端输入

10-6. 模数转换图

输入模拟量与转换的数字量关系如下表所示:

10-7. 编程举例

例 实时读取2个通道的数据(以第1个模块为例)

说明**:**

M8000 为常 ON 线圈,在 PLC 运行期间一直为 ON 状态。

PLC 开始运行,不断将 1#模块第 0 通道的数据写入数据寄存器 D0;

第1通道的数据写入数据寄存器 D1。

11、PT100 温度控制模块 XC-E6PT(-P)(-H)

本章主要介绍 XC-E6PT、XC-E6PT-H、XC-E6PT-P、XC-E6PT-P-H 模块的规格、端子说明、 输入定义号的分配、工作模式设定、外部连接、模数转换图以及相关编程举例。

11-1. 模块特点及规格

11-2. 端子说明

11-3. 输入定义号分配

11-4. 工作模式设定

11-5. 外部连接

11-6. 编程举例

11-1. 模块特点及规格

XC-E6PT、XC-E6PT-H 模块只有采集温度的功能,不带 PID 控制功能,没有输出通道。当前温度地址与 XC-E6PT-P 相同。

XC-E6PT-P、XC-E6PT-P-H 温度 **PID** 控制模块(以下简称为 **XC-E6PT-P**),对 6 点 **PT100** 温度信号进行处理,并把它们传输到 **PLC** 主单元。

模块特点

- 铂热电阻输入,分度号 Pt100。
 - 6 通道输入, 6 通道输出, 2 组 PID 参数(每 3 路 一组 PID 参数)。
- 1mA 恒流输出,不受外界环境变化影响。
- 分辨率精度为 0.1℃。
- 作为 XC 的特殊功能模块,最多可连接 7 台模块。
- XC-E6PT-H、XC-E6PT-P-H 模拟、数字部分电源 隔离处理。

模块规格

项目	内容
模拟量输入信号	Pt100 铂热电阻
测量温度范围	-100°C~350°C (XC-E6PT, XC-E6PT-P);
树重皿/文花园	-100°C~500°C (XC-E6PT-H、XC-E6PT-P-H)
数字输出范围	-1000~3500 或-1000~5000,带符号位 16 位,二进制
控制精度	± 0.5 °C
分辨率	0.1 °C
综合精确度	1%(相对最大值)
转换速度	20ms/1 通道
模拟量用电源	DC24V $\pm 10\%$, 50mA
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上
外形尺寸	63mm×102mm×73.3mm

注意:(1)无信号输入时,其通道数据为3500或5000。

⁽²⁾ 根据实际需要,连接 Pt100 铂热电阻。

11-2. 端子说明

端子排布

模块信号

通道	端子名	信号名		
CH0	A0	0CH 热电阻输入端		
	C0	0CH 热电阻输入公共端		
CH1	A1	1CH 热电阻输入端		
	C1	1CH 热电阻输入公共端		
CH2	A2	2CH 热电阻输入端		
	C2	2CH 热电阻输入公共端		
CH3	A3	3CH 热电阻输入端		
	C3	3CH 热电阻输入公共端		
CH4	A4	4CH 热电阻输入端		
	C4	4CH 热电阻输入公共端		
CH5	A5	5CH 热电阻输入端		
	C5	5CH 热电阻输入公共端		
-	Y0	输出0通道		
	Y1	输出1通道		
	Y2	输出2通道		
	Y3	输出3通道		
	Y4	输出4通道		
	Y5	输出 5 通道		
	COM0	输出公共端		
	COM1	输出公共端		
	COM2	输出公共端		
-	24V	+24V 电源		
	0V	电源公共端		

11-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID100	ID106	QD100	Y100		
1CH	ID101	ID107	QD101	Y101	KpQD106	KpQD110
2CH	ID102	ID108	QD102	Y102	KiQD107	KiQD111
3CH	ID103	ID109	QD103	Y103	KdQD108	KdQD112
4CH	ID104	ID110	QD104	Y104	DiffQD109	DiffQD113
5CH	ID105	ID111	QD105	Y105		

第二扩展模块寄存器定义号

通道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID200	ID206	QD200	Y200		
1CH	ID201	ID207	QD201	Y201	KpOD206	KpOD210
2CH	ID202	ID208	QD202	Y202	KiQD207	KiQD211
3CH	ID203	ID209	QD203	Y203	KdQD208	KdQD212
4CH	ID204	ID210	QD204	Y204	DiffQD209	DiffQD213
5CH	ID205	ID211	QD205	Y205		

第三扩展模块寄存器定义号

通 道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID300	ID306	QD300	Y300		
1CH	ID301	ID307	QD301	Y301	KpOD306	KpOD310
2CH	ID302	ID308	QD302	Y302	KiQD307	KiQD311
3CH	ID303	ID309	QD303	Y303	KdQD308	KdQD312
4CH	ID304	ID310	QD304	Y304	DiffQD309	DiffQD313
5CH	ID305	ID311	QD305	Y305		

通 道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID400	ID406	QD400	Y400		
1CH	ID401	ID407	QD401	Y401	KpQD406	KpQD410
2CH	ID402	ID408	QD402	Y402	KiQD407	KiQD411
3CH	ID403	ID409	QD403	Y403	KdQD408	KdQD412
4CH	ID404	ID410	QD404	Y404	DiffQD409	DiffQD413
5CH	ID405	ID411	QD405	Y405		

第四扩展模块寄存器定义号

第五扩展模块寄存器定义号

通道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID500	ID506	QD500	Y500		
1CH	ID501	ID507	QD501	Y501	KpOD506	KpOD510
2CH	ID502	ID508	QD502	Y502	KiQD507	KiQD511
3CH	ID503	ID509	QD503	Y503	KdQD508	KdQD512
4CH	ID504	ID510	QD504	Y504	DiffQD509	DiffQD513
5CH	ID505	ID511	QD505	Y505		

第六扩展模块寄存器定义号

通 道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID600	ID606	QD600	Y600		
1CH	ID601	ID607	QD601	Y601	KpQD606	KpQD610
2CH	ID602	ID608	QD602	Y602	KiQD607	KiQD611
3CH	ID603	ID609	QD603	Y603	KdQD608	KdQD612
4CH	ID604	ID610	QD604	Y604	DiffQD609	DiffQD613
5CH	ID605	ID611	QD605	Y605		

第七扩展模块寄存器定义号

通道	当前温度	PID 输出值	设定温度	PID 启停控制位	前 3 路 PID 值	后 3 路 PID 值
0CH	ID700	ID706	QD700	Y700		
1CH	ID701	ID707	QD701	Y701	KpOD706	KpOD710
2CH	ID702	ID708	QD702	Y702	KiQD707	KiQD711
3CH	ID703	ID709	QD703	Y703	KdQD708	KdQD712
4CH	ID704	ID710	QD704	Y704	DiffQD709	DiffQD713
5CH	ID705	ID711	QD705	Y705		

说明:

● 启动信号 (Y): 当 Y 为 0 时关闭 PID 控制,为 1 时开启 PID 控制。

11-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

配置面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置	1		2	×
□- <u>〕</u> PLC配置 □-密码 	 #1 BD XC-6PT-P: Range(- #2 未挂模块 #3 未挂模块 #4 未挂模块 	选择模块:(XC XC-6PT-P	-6PT-P	观消模块 3
		通道1: 滤	波: 1/2滤波 ▼ 打	空温周期: 2S ▼
	····#7 未挂模块	通道2: 滤	波: 1/2滤波 ▼ 打	空温周期: 2S ▼
<u>1/0</u> 1/0 		通道3: 渡	波: 1/2滤波 ▼ 打	空温周期: 2S ▼
M 运动控制参数		通道4: 滤	波: 1/2滤波 ▼ 打	空温周期: 2S ▼
		通道5: 渡	题波: 1/2滤波 ▼ 打	空温周期: 25 ▼
		通道6: 渡	読: 1/2滤波 ▼ 打	空温周期: 2S ▼
	4 III +			
		读取PLC	写入PLC 确定	取消

第一步: 在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步: 另外在'3'处可以选择对应滤波方式和各通道对应的控温周期;

第四步:配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

注意: XC-E6PT 的配置面板如下:

PLC1 - 扩展模块 设置		x
 ■ PLC配置 ■ SEG ● PLC 串口 ● BD ● CRN CAN ● M 断电区域保存 ● DO 扩展模块 ● T/0 ● DO MA 扩展模块 ● M 运动控制参数 	 #1 BD XC-6FT: Range(-10) #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #7 未挂模块 #7 未挂模块 #6 正位 #6 正位 #7 未挂模块 #6 正位 #7 示 注模块 #6 正位 #7 示 注模块 #6 正位 #7 示 注模块 #6 正位 #6 正位 #6 正位 #7 示 注 模块 #6 正位 #7 示 注 模块 #6 正位 #7 示 注 (10) #8 正位 <li< td=""><td></td></li<>	
	读取PLC 写入PLC 确定 取消	

Flash 寄存器设置

扩展模块 0CH~5CH 通道可设定滤波参数和控温周期,通过 PLC 内部的特殊 FLASH 数据 寄存器 FD 进行设置。如下所示:

描 拍	通道编号			
医	0CH~3CH	4CH~5CH		
1#模块	FD8250	FD8251 低字节		
2#模块	FD8258	FD8259 低字节		
3#模块	FD8266	FD8267 低字节		
4#模块	FD8274	FD8275 低字节		
5#模块	FD8282	FD8283 低字节		
6#模块	FD8290	FD8291 低字节		
7#模块	FD8298	FD8299 低字节		

注:如上所示每个寄存器设定4个通道的模式,每个寄存器的共有16个位,从低到高每4个位 依次设置4个通道的模式。

以1#模块为例:

FD 的位定义

滤波方式和控温周期:

- 模块可以设定的工作模式有:滤波方式和控温周期。
- 控温周期:进行 PID 调节时,输出端子是在周期时间内按 PID 输出值计算得的占空比进行加热,这段周期时间就是控温周期。

以第一模块为例,说明设置方式:

寄存器 FD8250:

通道1			通道 0	
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2 Bit1	Bit0
00: 1/2 滤波	-	0:2秒	00: 1/2 滤波 -	0:2秒
01: 不滤波			01: 不滤波	
10: 1/3 滤波	-	1:20秒	10: 1/3 滤波 -	1:20秒
11: 1/4 滤波			11: 1/4 滤波	
通道 3			通道 2	
Bit15 Bit14	Bit13	Bit12	Bit11 Bit10 Bit9	Bit8
00: 1/2 滤波	-	0:2秒	00: 1/2 滤波 -	0:2秒
01: 不滤波			01: 不滤波	
10: 1/3 滤波	-	1:20秒	10: 1/3 滤波 _	1:20秒
11: 1/4 滤波			11: 1/4 滤波	

寄存器 FD8251 低字节:

通道 5			通道 4		
Bit7 Bit6	Bit5	Bit4	Bit3 Bit2 Bit1		Bit0
00: 1/2 滤波	-	0:2秒	00: 1/2 滤波	-	0:2秒
01: 不滤波			01: 不滤波		
10: 1/3 滤波	-	1:20秒	10: 1/3 滤波	-	1:20秒
11: 1/4 滤波			11: 1/4 滤波		

注意:出厂时默认值都为 0,初始滤波方式为 1/2 滤波。

11-5. 外部连接

热电阻连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,应对信号线采取屏蔽措施。

输入接法

输出电路

- 输出端子: 晶体管输出型端子, 请选用 DC5V~30V 的平滑电源。
- 电路绝缘:可编程序控制器内部电路和输出晶体管之间使用光耦合器进行光绝缘,各个公 共模块也是互相分开的。
- 响应时间:从可编程序控制器驱动(或断路)光耦合器到晶体管 ON/OFF 的时间,不超过 0.2ms。
- 输出电流:为了限制温度升高,请按每一点通电 0.15A 使用。
- 开路漏电流: 0.1mA 以下。

PT100 输入特性曲线

11-6. 编程举例

M8000 QD100 -11-MOV K800 MOV K30 QD106 QD107 MOV K5 MOV K50 QD108 MOV K150 QD109 M0 Y100 ++END

例1:以1#模块为例,对其0CH进行PID控制。

说明:

设定第 0 通道的温度设定值为 800 (80℃),

设定第 0 通道比例系数 Kp 为 30,

设定第 0 通道积分系数 Ki 为 5,

设定第 0 通道微分系数 Kd 为 500,

设定第 0 通道控制范围为 Diff 为 150 (即在 650-950 之间投入 PID 运算),

通过 Y100 来启动/停止第 0 通道的 PID 控制。

例 2: XC-E6PT-P 温度 PID 控制模块安装在 1#位置,将 0CH、1CH 的温度测量值存放在寄存器 D0、D1 中,并对 0CH 进行 PID 调整。

软件编程:

M8000			
	MOV	ID100	D0
	MOV	ID101	D1
设定值 M8002			
	MOV	K500	QD100
Y100 PID启(亭位		
Y100 PID启4 M0 →↓ PID调整 依次	亭位 、为P,I,D,PID认	間节范围	Y100
Y100 PID启作 M0 →↓ PID调整 依次 M8002 →↓	亭位 (为P,I,D,PID) MOV		Y100 QD106
Y100 PID启作 M0 →	亭位 (为P,I,D,PID) · MOV MOV	問节范围 K100 K20	Y100 QD106 QD107
Y100 PID启 M0 → PID调整 依次 M8002 →	亭位 (为P,I,D,PID) · MOV MOV MOV	問节范围 K100 K20 K100	Y100 QD106 QD107 QD108

12、PT100 温度控制模块 XC-E2PT-H

本章主要介绍 XC-E2PT-H 模块的规格、端子说明、输入定义号的分配、工作模式设定、外部连接、模数转换图以及相关编程举例。

12-1. 模块特点及规格

12-2. 端子说明

12-3. 输入定义号分配

12-4. 工作模式设定

12-5. 外部连接

12-6. 编程举例

12-1. 模块特点及规格

XC-E2PT-H 作为温度采集模块,支持2通道 PT100 温度输入,该模块集成2路独立温度采集,不带 PID 调节功能。

模块特点

- 具有 2 通道 PT100 温度输入。
- 采用 DC-DC 电源隔离设计,增强系统抗干扰能力。
- 显示温度精度为 0.01℃。
- 作为 XC 的特殊功能模块,最多可连接 7 台。

模块规格

项目	内容
模拟量输入信号	Pt100 铂热电阻
测量温度范围	-100°C~327°C
数字输出范围	-10000~32767,带符号位16位,二进制
控制精度	± 0.5 °C
分辨率	0.01 °C
综合精确度	1%(相对最大值)
转换速度	20ms/1 通道
模拟量用电源	$DC24V \pm 10\%$, 50mA
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上
外形尺寸	63mm×102mm×73.3mm

注意:(1)无信号输入时,其通道数据为32767。

(2) 根据实际需要,连接 Pt100 铂热电阻。

版本要求

- PLC 本体:硬件版本 V3.2 及以上版本。
- 编程软件: XCPPro V3.3L 及以上版本。
- 温度传感器: 铂热电阻 PT100。

12-2. 端子说明

端子排布

对于 XC-E2PT-H 温度控制模块而言,端子台排列如下所示:

模块信号

通道	端子名	信号名
CH0	A0	0CH 热电阻输入端
	B0	
	C0	0CH 热电阻输入公共端
CH1	A1	1CH 热电阻输入端
	B1	
	C1	1CH 热电阻输入公共端
	24V	+24V 电源
	0V	电源公共端

三线制 PT100 铂热电阻的输入接线方式,具体方式如下:

其中,对于一般的三线制 PT100 铂热电阻,可根据 导线颜色区分其接线方式,其中相同颜色的两根导线 可随机接至 B0 及 C0 端子侧,另一端可接至 A0 端。

12-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	当前温度
0CH	ID100
1CH	ID101

第二扩展模块寄存器定义号

通道	当前温度
0CH	ID200
1CH	ID201

第三扩展模块寄存器定义号

通道	当前温度
0CH	ID300
1CH	ID301

第四扩展模块寄存器定义号

通道	当前温度
0CH	ID400
1CH	ID401

第五扩展模块寄存器定义号

通道	当前温度
0CH	ID500
1CH	ID501

第六扩展模块寄存器定义号

通道	当前温度
0CH	ID600
1CH	ID601

第七扩展模块寄存器定义号

通道	当前温度
0CH	ID700
1CH	ID701

12-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

配置面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置							_
 PLC電器 密码 密日 PLC 串口 BD CM Ma 断电区域保存 UGU 扩展模块 T/0 UGU MA 扩展模块 运动控制参数 □ 44500X 	 XC-B2PT-H: #22 未挂模块 #3 未挂模块 #4 未挂模块 #4 未挂模块 #6 未挂模块 #7 未挂模块 	2 channe) 达	:择模块:	E2PT-H	取消	真块	
				读取PLC	Sam	确定	取消

第一步: 在图示 '2'处选择对应的模块型号 (此处请选择 "XC-E2PT-H"); 第二步: 完成第一步后 '1'处会显示出对应的型号; 第三步: 配置完成后点击 "写入 PLC", 然后点击 "确定"。之后再下载用户程序, 运行程序后, 此配置即可生效。

PT100 输入特性曲线

12-5. 外部连接

热电阻连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,应对信号线采取屏蔽措施。

接线图如下所示:

12-6. 程序举例

例:以#1 模块为例,读取2路温度值

说明**:**

将0通道、1通道的温度测量值分别存在寄存器 D0、D1中。

13、热电偶温度控制模块 XC-E2TCA-P、XC-E6TCA-P

本章主要介绍 XC-E6TCA-P 模块的规格、相关热电偶知识、端子说明、数据地址说明、工 作流程和原理、读写数据指令说明以及相关编程举例。

13-1. 模块特点及规格

13-2. 热电偶背景知识介绍

13-3. 端子说明

13-4. 数据地址说明

13-5. 模块工作流程及相关原理

13-6. 读写数据指令说明

13-7. 编程举例

13-1. 模块特点及规格

XC-E6TCA-P(V4)及以上版本在 XC-E6TCA-P(V3)的基础上进行了升级,具有更强的抗 干扰能力。XC-E2TCA-P/XC-E6TCA-P作为 PID 温度控制模块,支持多型号热电偶输入,针对 多路温度控制应用而推出的解决方案。该模块集成 2/6 路独立温度采集,具有 PID 自整定、独 立 PID 参数设置、本体通讯读写等功能。因此,基于此模块,可与 PLC、触摸屏、计算机等组 成分布式温度控制系统。

模块特点

- 支持多种热电偶类型。
- 采用 DC-DC 电源隔离设计,增强系统抗干扰能力。
- 显示温度精度为 0.1℃。
- 独立设置每路温度通道 PID 参数值,具有单独寄存器地 址空间。
- 支持 PID 实时自整定功能。允许设备在各种状态下(冷态、加热状态、过渡状态等),进行 PID 自整定,得到合适 PID 整定值。
- 基于 PLC 本体通讯指令 FROM 和 TO 指令进行数据交换, 增加产品运用灵活性,节省交互数据量,扩大数据存储 空间。
- 作为 XC 的特殊功能模块,最多可连接 7 台。

模块规格

项目	规格					
测量温度范围	K型:0℃~1300℃(注:V6以下的老版本为0℃~1000℃)					
	S型: 0℃~1700℃					
	E 型: 0℃~600℃					
	N型: 0℃~1200℃					
	B型:0℃~1800℃					
	T型:0℃~400℃					
	J型:0℃~800℃					
	R型:0℃~1700℃					
输入通道数	6 通道(XC-E2TCA-P为2通道)					
分辨率	0.1°C					
综合精确度	量程*1%					
转换速度	20ms/1 通道					
使用环境	无腐蚀性气体					
环境温度	0°C~60°C					
保存环境温度	-20~70°C					
环境湿度	5~95%					

保存环境湿度	5~95%
安装	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上
外形尺寸	63mm×102mm×73.3mm

适用环境

- PLC 本体: 硬件版本 V3.1e 及以上版本。
- 编程软件: XCPPro V3.1b 及以上版本。
- 温度传感器: K型热电偶, S型热电偶, E型热电偶, N型热电偶, J型热电偶, T型 热电偶, R型热电偶。

13-2. 热电偶背景知识介绍

13-2-1. 热电偶概述

热电偶作为工业测温中最广泛使用的温度传感器之一,通常和显示仪表等配套使用,直接测量各种生产过程中-40~1800℃范围内的液体、蒸气和气体介质以及固体的表面温度。

当两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶利用热电效应原理进行温度测量,测量端直接作用于介质,冷端与显示仪表或配套仪表连接,那么,显示仪表会指出热电偶所产生的热电势。

所以,热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势。

工业测温用的热电偶,其基本构造包括热电偶丝材、绝缘管、保护管和接线盒等。

13-2-2. 常见热电偶类型

1、K型热电偶镍铬(镍硅(镍铝)热电偶)

K型热电偶是抗氧化性较强的贱金属热电偶,可测量 0~1300℃的介质温度,适宜在氧化 性及惰性气体中连续使用,短期使用温度为 1200℃,长期使用温度为 1000℃,其热电势与温度 的关系近似线性,是目前用量最大的热电偶。然而,它不适宜在真空、含硫、含碳气氛及氧化 还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大 变化,但金属气体对其影响较小,因此,多采用金属制保护管。

K型热电偶缺点:

(1) 热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过 1000℃)往往因氧化而损坏;

(2)在250~500℃范围内短期热循环稳定性不好,即在同一温度点,在升温降温过程中, 其热电势示值不一样,其差值可达2~3℃;

(3) 其负极在 150~200℃范围内要发生磁性转变, 致使在室温至 230℃范围内分度值往往 偏离分度表, 尤其是在磁场中使用时往往出现与时间无关的热电势干扰;

(4)长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。

2、S型热电偶(铂铑10-铂热电偶)

该热电偶的正极成份为含铑 10%的铂铑合金,负极为纯铂。

其特点是:

(1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂;

(2) 精度高,在所有热电偶中准确度等级最高,通常用作标准或测量较高温度;

(3) 使用范围较广,均匀性及互换性好;

(4) 主要缺点有: 微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在 还原性气氛或有金属蒸汽的条件下使用。

3、E型热电偶(镍铬一铜镍[康铜]热电偶)

E型热电偶为一种较新产品,正极为镍铬合金,负极为铜镍合金(康铜)。其最大特点是在常用的热电偶中,其热电势最大,即灵敏度最高;它的应用范围虽不及K型偶广泛,但在要求灵敏度高、热导率低、可容许大电阻的条件下,常常被选用;使用中的限制条件与K型相同,

但对于含有较高湿度气氛的腐蚀不很敏感。

4、N型热电偶(镍铬硅-镍硅热电偶)

该热电偶的主要特点:在1300℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400~1300℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200~400℃)的非线性误差较大,同时,材料较硬难于加工。

5、J型热电偶(铁一康铜热电偶)

J型热电偶: 该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格便宜,适用于 真空氧化的还原或惰性气氛中,温度范围从-200~800℃,但常用温度只在 500℃以下,因为超 过这个温度后,铁热电极的氧化速率加快,如采用粗线径的丝材,尚可在高温中使用且有较长 的寿命;该热电偶能耐氢气(H2)及一氧化碳(CO)气体腐蚀,但不能在高温(例如 500℃) 含硫(S)的气氛中使用。

6、T型热电偶(铜一铜镍热电偶)

T型热电电偶:该热电偶的正极为纯铜,负极为铜镍合金(也称康铜),其主要特点是:在 贱金属热电偶中,它的准确度最高、热电极的均匀性好;它的使用温度是-200~350℃,因铜热 电极易氧化,并且氧化膜易脱落,故在氧化性气氛中使用时,一般不能超过 300℃,在-200~300℃ 范围内,它们灵敏度比较高,铜一康铜热电偶还有一个特点是价格便宜,是常用几种定型产品 中最便宜的一种。

7、R型热电偶(铂铑13-铂热电偶)

该热电偶的正极为含 13%的铂铑合金,负极为纯铂,同 S 型相比,它的电势率大 15%左右, 其它性能几乎相同,该种热电偶在日本产业界,作为高温热电偶用得最多,而在中国,则用得 较少。

13-3. 端子说明

端子排布

以 XC-E6TCA-P 为例说明:

 TC0+
 TC1+
 TC2+
 TC3+
 TC4+
 TC5+

 TC0 TC1 TC2 TC3 TC4 TC5

名称	注释					
输入端子		模拟量输入,				
(TC0+,TC0,,TC5+,TC5-)	6 通道	范围: K型: 0℃~1300℃				
		S型: 0℃~1700℃				
		E型:0℃~600℃				
		N型: 0℃~1200℃				
		B型:0℃~1800℃				
		T型:0℃~400℃				
		J型: 0℃~800℃				
		R型: 0℃~1700℃				
输出端子	(理法	模拟量输出	以数字量形式,范围: 0~4095			
(Y0~Y5)	0 通道	开关量输出	以占空比形式,在接通时间内 Y 输出			
电源输入	24V: +24V 电源		可连接 XC 本体 24V 输出或单独接开			
(24V, 0V)	0V: 电源公共端		关电源			

注意:(1) XC-E2TCA-P 的输入端子和输出端子只有 2 路。

(2) 输出端子 Y0~Y5 是 PID 控制输出。
13-4. 数据地址说明

13-4-1. 工作模式定义

对于 XC-E2TCA-P、XC-E6TCA-P 温度模块而言,可连接多种形式的热电偶。为便于配置, 对各种热电偶的类型加以索引号以便区别,如下表所示:

索引号	0	1	2	3	4	5	6
热电偶类型	K 型	S 型	E 型	N 型	J型	T 型	R 型

工作模式的设定有两种方法可选(这2种方式的效果是等价的):

1: 通过设置面板配置

2: 通过 Flash 寄存器 (FD) 设置

配置面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置	1	2	
 ■ PLC配置 ● 密码 ● PLC 串口 ● BD ● CAN ● M ● CAN ● M ● M ● CAN ● CAN<td>#1 BD XC-6TCA-P : 6 chan #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块</td><td>选择模块: <u>XC-6TCA-P</u> • 取消模块 XC-6TCA-P 通道1: 分度号: <u>S型</u> • 3 通道2: 分度号: <u>S型</u> • 3 通道3: 分度号: <u>S型</u> • 加 通道4: 分度号: <u>R</u>型 通道5: 分度号: <u>T型</u> • 通道6: 分度号: <u>K型</u> •</td><td></td>	#1 BD XC-6TCA-P : 6 chan #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块	选择模块: <u>XC-6TCA-P</u> • 取消模块 XC-6TCA-P 通道1: 分度号: <u>S型</u> • 3 通道2: 分度号: <u>S型</u> • 3 通道3: 分度号: <u>S型</u> • 加 通道4: 分度号: <u>R</u> 型 通道5: 分度号: <u>T型</u> • 通道6: 分度号: <u>K型</u> •	
		读取PLC 写入PLC 确定	取消

在图示 '2' 处选择对应的模块型号,完成后 '1' 处会显示出对应的型号,另外在 '3' 处可以选择对应的热电偶型号, XC-E6TCA-P 支持 7 种热电偶类型。

配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后,此 配置即可生效。(注: V3.3 以下版本的软件配置后,需要把 PLC 断电重启才能生效。)

Flash 寄存器设置

那么,针对模块的通道热电偶选择,需通过 FD8250 及 FD8251 寄存器的数值进行设置,具体如下表所示:

FD8250 内数值配置:

TC 通道 1				TC 通道 0			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
根据分度号写入对应索引值			根据分度号写入对应索引值				
	TC 道	通道3		TC 通道 2			
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8

FD8251 内数值配置:

TC 通道 5				TC 通道 4			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
根据分度号写入对应索引值				根据分度号写入对应索引值			
无			无				
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8

例如: 当 XC-E6TCA-P 模块的通道 0 选择 S 型热电偶,通道 1 选择 N 型热电偶,通道 5 选择 E 型热电偶,那么数据设置如下: FD8250: 31H, FD8251: 20H,即完成了此模块工作模式的配置。

13-4-2. 模块数据地址概述

对于 XC-E6TCA-P 温度控制模块,存在与控制系统温度相关的各种参数,如采样温度值, PID 触点输出值等,具体如下表所示:

相关参数	注释及说明						
	通道	Ch0	Ch1		Ch5		
	模块1	ID100	ID101	ID10×	ID105		
通道显示温度值	模块 2	ID200	ID201	ID20×	ID205		
(単位 0.1℃)		ID×00	ID×01	ID×0×	ID×05		
	模块 7	ID700	ID701	ID70×	ID705		
	模块 1	X100	X101	X10×	X105		
PID 服 点 制 出	模块 2	X200	X201	X20×	X205		
		X×00	X×01	X×0×	X×05		
	模块 7	X700	X701	X70×	X705		
通道热电偶连接	模块 1	X110	X111	X11×	X115		
状态	模块 2	X210	X211	X21×	X215		
(0为接线,1为		X×10	X×11	X×1×	X×15		
断偶)	模块 7	X710	X711	X71×	X715		
PID 自整定错误	模块1	X120	X121	X12×	X125		
位(0为正常,1	模块 2	X220	X221	X22×	X225		
为自整定参数错		X×20	X×21	X×2×	X×25		
误)	模块 7	X720	X721	X72×	725		
住地 通送 片日 (6	模块1	Y100	Y101	Y10×	Y105		
世形通道信亏(U	模块 2	Y200	Y201	Y20×	Y205		
为天闲, 1 万打 正、		Y×00	Y×01	Y×0×	Y×05		
л)	模块 7	Y700	Y701	Y70×	Y705		
自整定 PID 控制 位	自整定触发信号,当置1时进入自整定阶段。 自整定结束后,PID参数值和控温周期数值被刷新,并自动将该控制位清0。 用户亦可读出其状态,为1时表示处于自整定过程中,为0时表示未进行自整定或自整定						
PID 输出值 (运算结果)	□ 年40 本。 数字量输出值取值范围为 0~4095。 在 PID 输出为模拟量控制(如蒸汽阀门开度或可控硅导通角)时,可将该数值传送给模拟 量输出模块,以实现控制要求。						
PID 参数值 (P、I、D)	通过 PID 自整定得到的最佳参数值。 若当前 PID 控制不能很好的满足控制要求,用户亦可直接写入经验 PID 参数,模块依照用 户设定的 PID 参数进行 PID 控制。						
PID 运算范围 (Diff) (单位 0.1℃)	PID 算法在设定温度的±Diff 摄氏度范围内起作用。在实际温控环境中,当温度低于 $T_{\rm clift}$						
温度偏差值δ	(采样温度值+	温度偏差值δ)/10	= 显示温度值。此	比时通道温度显示值	直就可以与实际温度		
(单位 0.1℃)	相等或尽可能接	近。该参数为有符	「号数, 单位 0.1℃	,停电带保持,出	厂缺省值为0。		
设定温度值 (单位 0.1℃)	控制系统的目标	温度值。调整范围	圆为0~1000℃,精	青度为 0.1℃。			

控温周期	控制周期调整范围 0.5 秒~200 秒,最小精度为 0.1 秒。写入值为实际控温周期值乘以 10,					
(单位 0.1 秒)	即 0.5 秒控制周期需写入 5, 200 秒控制周期需写入 2000。					
	用户认为环境温度值与模块通道显示温度值不一致时,可以将已知的环境温度值写入该参					
	数。模块在被写入的这一刻,将温度偏差值δ计算出来,并保存。					
	计算温度偏差值δ=校准环境温度值-采样温度值。单位 0.1℃。					
校准环境温度值	例如:在热平衡状态,用户用水银温度计测得环境温度为60.0℃,当时显示温度为55.0℃					
(単位 0.1℃)	(对应采样温度 550),温度偏差值δ=0。此时,用户向该参数写入 600,温度偏差值δ被重					
	新计算为 50 (5℃),于是显示温度 = (采样温度值+温度偏差值δ) /10 =60℃。					
	**注意:用户输入校准温度值时,确认和环境温度一致。该数据非常重要,一旦输入错误,					
	会导致计算温度偏差值δ严重错误,进而影响显示温度。					
白軟穴於山梔南	自整定时的输出量,以%为单位,100就表示占空比为满刻度输出的100%,80为满刻度					
日登止刑出帕度	输出的 80%。					

注意: (1) XC-E2TCA-P 的温度输入通道只有 ch0、ch1。

(2) Y100~Y105 是使能控制位,并不是模块上的 Y0~Y5 输出端子。

13-4-3. 相关地址定义

用户使用此模块过程中,涉及相关参数读写操作对象,以下对其地址排列作一些说明: 1. 读指令(FROM)操作对象地址排列如下:

地址	描述					
K0	自整定	自整定 PID 控制状态信号				
K1	Ch0	PID 输出值(运算结果)				
K2	Ch1	PID 输出值(运算结果)				
:	:	:				
K6	Ch5	PID 输出值(运算结果)				
K7		PID 参数值(P)				
K8	ChO	PID 参数值(I)				
K9		PID 参数值(D)				
K10		PID 参数值(Diff)				
K11		PID 参数值(P)				
K12	Ch 1	PID 参数值(I)				
K13		PID 参数值(D)				
K14		PID 参数值(Diff)				
:	:	:				
K27		PID 参数值(P)				
K28	Ch5	PID 参数值(I)				
K29		PID 参数值(D)				
K30		PID 参数值(Diff)				
K31	Ch0	温度偏差值				
K32	Ch1	温度偏差值				
:	:	:				
K36	Ch5	温度偏差值				

2. 写指令(TO)操作对象地址排列如下:

地址	描述	
K0	自整定	E PID 触发信号
K1	Ch0	设定温度值
K2	Ch1	设定温度值
:	:	:
K6	Ch5	设定温度值
K7		PID 参数值(P)
K8	ChO	PID 参数值(I)
K9	Chu	PID 参数值(D)
K10		PID 参数值(Diff)
K11		PID 参数值(P)
K12	Ch1	PID 参数值(I)
K13	CIII	PID 参数值(D)
K14		PID 参数值(Diff)
:	:	:
K27		PID 参数值(P)
K28	Ch5	PID 参数值(I)
K29		PID 参数值(D)
K30		PID 参数值(Diff)
K31	Ch0	控温周期
K32	Ch1	控温周期
:	:	:
K36	Ch5	控温周期
K37	Ch0	校准环境温度值
K38	Ch1	校准环境温度值
:	••	:
K42	Ch5	校准环境温度值
K43	Ch0	自整定输出幅度
K44	Ch1	自整定输出幅度
:	:	:
K48	Ch5	自整定输出幅度
K49	Ch0	温度偏差值
K50	Ch1	温度偏差值
:	:	:
K54	Ch5	温度偏差值

另外,模块可保存设定温度值、PID参数值(包括P参数、I参数、D参数、Diff参数)、 温度偏差值、控温周期、自整定输出幅度等参数。当自整定结束或者用户修改时,进行保存; 上电重启后取出进行操作。

各部分参数出厂默认值如下表所示:

参数	出厂默认值						
设定温度值(0.1°C)	CH0	CH1	CH2	CH3	CH4	CH5
		0	0	0	0	0	0
PID 参数值	P参数	40	40	40	40	40	40
	I参数	1200	1200	1200	1200	1200	1200
	D参数	300	300	300	300	300	300
	Diff 参数	10	10	10	10	10	10
控温周期值(0.1s为单位)		20	20	20	20	20	20
温度偏差值 (有符号数)		0	0	0	0	0	0
自整定输出幅	度值	100	100	100	100	100	100

13-5. 模块工作流程及相关原理

模块运行过程如下:

模块上电时,读出 PID 参数值,设定温度值、控温周期值、温度偏差值、自整定输出幅度 等值。这样,即使用户写入数据后掉电,上电重启动后便可依照原参数运行。如下图所示:

当上电读取数据完成后,模块即开始温度采样,此时,根据控制要求写入设定温度值,控 温周期值,自整定输出幅度值等参数。

模块判断各通道使能信号,若有效,即开始对目标对象进行 PID 控制。

同时,模块将在此过程中判断自整定触发信号。

倘若触发信号为1,上升沿信号来临时便开始自整定过程,状态位被自动置1;自整定过程 结束时(或触发信号被复位),状态位与触发信号均被复位,表示自整定已经完成(或被用户退 出);而后,系统转为 PID 控制。

倘若自整定触发信号不为1,则继续进入PID 控制过程。

注意: PID 运算过程是根据 PID 参数值、设定温度和控制周期来进行控制的,倘若某一通道的 控制周期设为 0,模块将关闭该通道的输出,仅作温度采样。

整个控制过程的流程如下图所示:

13-6. 读写数据指令说明

13-6-1. 指令说明

PLC 本体可通过指令读写 XC-E6TCA-P 温度采集模块的指定数据区域,以此来满足用户控制需求。共存在"读取指令 FROM"、"写入指令 TO"两条操作指令,以下将对这两条指令作详细说明。

注意: 第一个模块的模块号为 K0。

1. 参数读取指令 FROM

此指令在触发条件满足时,进行读操作,不满足时不进行,可分为位操作和字操作。 (1)字操作

功能:将指定模块地址中数据信息读取至本体指定寄存器中,以字为操作单位。 操作数说明:

S1: 目标模块号。可用操作数: K、TD, CD, D, FD。

S2: 读模块的首地址。可用操作数: K、TD, CD, D, FD。

- S3: 读取寄存器个数 (字数)。可用操作数: K、TD, CD, D, FD。
- D1:本体接收寄存器首地址。
- (2) 位操作

功能:将指定模块地址中数据信息读取至本体指定地址中,以位为操作单位。 操作数说明:

S1: 目标模块号。可用操作数: K、TD, CD, D, FD。

S2: 读模块的首地址。可用操作数: K、TD, CD, D, FD。

S3: 读取数据个数(位数)。可用操作数: K、TD, CD, D, FD。

D1:本体接收数据线圈首地址。可操作数:M、Dn.m。

2. 参数写入指令 TO

此指令在触发条件满足时,进行写操作,不满足时不进行,同样可分为位操作和字操作。 (1)字操作

M1		Dl	D2	D3	SI
 ↑	ТО	Kxxx	Kxxx	Kxxx	Dxxx

功能:将本体指定寄存器数据信息写入至指定模块地址中,以字为操作单位。 操作数说明:

> D1: 目标模块号。可用操作数: K、TD, CD, D, FD。 D2: 写模块的首地址。可用操作数: K、TD, CD, D, FD。

D3: 写入寄存器个数(字数)。可用操作数: K、TD, CD, D, FD。 S1: 本体内存放写入数据的寄存器首地址。

(2) 位操作

功能:将本体指定寄存器位数据信息写入至指定模块地址中,以位为操作单位。 操作数说明:

D1: 目标模块号。可用操作数: K、TD, CD, D, FD。

D2: 写模块的首地址。可用操作数: K、TD, CD, D, FD。

D3: 写入数据个数(位数)。可用操作数: K、TD, CD, D, FD。

S1:本体内存放写入数据的线圈首地址。可操作数:M、Dn.m。

13-6-2. 指令应用

1、设定温度

说明:在 D0 输入设定温度值,置位线圈将数据写入模块地址 K1 (Ch0 设定温度值)。 例如 D0=2000,表示设定温度值为 200℃。

操作数含义:

- (1) TO 写指令
- (2) K0 模块号: 0
- (3) K1 模块内地址: 1
- (4) K1 连续写入字数:1
- (5) D0 数据存放在本体的寄存器: D0

2、设定控温周期

说明:在 D10 输入控温周期,置位线圈将数据写入模块地址 K31 (Ch0 控温周期)。 例如 D10=25,表示控温周期为 2.5 秒。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号:0
 - (3) K31 模块内地址: 31
 - (4) K1 连续写入字数:1
 - (5) D10 数据存放在本体的寄存器: D10

3、自整定输出幅度

说明:在 D20 输入自整定输出幅度,置位线圈将数据写入模块地址 K43 (Ch0 自整定输出幅度)。 例如 D20=80,表示自整定过程中的输出量为最大可能输出值的 80%。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号: 0
 - (3) K43 模块内地址: 43
 - (4) K1 连续写入字数:1
 - (5) D20 数据存放在本体的寄存器: D20
- 4、自整定触发位置位

说明: 自整定前将 M0 相应位置线圈置位,数据写入模块地址 K0 后开始自整定。若在自整定过程中,复位 M0 中相应线圈并写入模块,模块将退出自整定过程并依照先前 PID 参数进行 PID 控制。

例如将 M0 置 ON 表示即将对第 0 通道进行自整定。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号:0
 - (3) K0 模块内地址: 0
 - (4) K6 连续写入位数:1
 - (5) M0 数据存放在本体的寄存器: M0。

5、读自整定状态位

说明:用户可读取模块自整定状态位,返回至本体的 M10。若 M10 为 ON,则表示模块正在进行自整定,为 OFF 表示自整定未开始或已经结束。

- 操作数含义: (1) FROM 读指令
 - (2) K0 模块号: 0
 - (3) K0 模块内地址: 0
 - (4) K6 连续读取位数:1
 - (5) M10 数据存放到本体的线圈: M10。

6、读 PID 参数

说明:用户可读取模块的 PID 参数(通道 Ch0 内 PID 参数值),返回至本体的 D30~D33。D30 中的数据为 P 参数,D31 中的数据为 I 参数,D32 中的数据为 D 参数,D33 中的数据为 Diff 参数。

- 操作数含义: (1) FROM 读指令
 - (2) K0 模块号:0
 - (3) K7 模块内地址: 7
 - (4) K4 连续读取字数: 4
 - (5) D30 数据存放到本体的寄存器: D30~D33
- 7、写 PID 参数

说明:用户可改写模块的 PID 参数(通道 Ch5 内 PID 参数值),把数据输入本体的 D40~D43 后置位线圈,PID 参数写入模块,模块会以新的 PID 参数进行 PID 运算。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号:0
 - (3) K27 模块内地址: 27
 - (4) K4 连续写入字数: 4
 - (5) D40 数据存放在本体的寄存器: D40~D43

8、打开使能通道位

说明:对于模块号为0的模块,通道0~5对应使能位为Y100~Y105;模块号为1的模块,通道0~5对应使能位为Y200~Y205;以此类推。因此,只要将相应的使能位置ON,就开始对该通道进行 PID 控制。

9、读 PID 输出值

说明:模块在 PID 控制过程中,用户可读取 PID 输出值至本体寄存器 D50~D55。

- 操作数含义: (1) FROM 读指令
 - (2) K0 模块号: 0
 - (3) K1 模块内用户地址: 1
 - (4) K6 连续读取字节数: 6
 - (5) D50 数据存放到本体的寄存器: D50~D55

13-7. 编程举例

在温度采集的实际运用环境中, 需测量一个系统的多个温度值。本例将以 5 通道温度采集 控制说明 XC-E6TCA-P 模块使用的环境。

整个系统包括 TP 系列触摸屏, XC 系列 PLC, XC-E6TCA-P 模块, 以及 K 型热电偶, 加热电阻等外围设备。整个系统图如下所示:

以下将通过举例对 XC-E6TCA-P 的应用加以说明,如下:

该案例通过触摸屏来实现温度控制过程。

1. 模块上电,读取当前温度值,并于触摸屏上显示。

2. 写入目标温度值,按"写入目标温度值"按钮,便将目标值顺利写入模块内。

3. 当对默认 PID 参数不满意时,输入 PID 参数值,按 "PID 使能位",模块便进入 PID 控制过程。

 当模块需要自整定时,按对应通道"本地自整定控制位和状态位",再按"自整定控制 位",便可进行相应通道的自整定控制。

5. 通过"本地自整定控制位和状态位"可观察自整定过程是否结束。

6. 按下"读取 PID 参数"可读取对应通道当前 PID 参数值。

7. 当需校准环境温度时,可在"校准环境温度"画面中输入当前温度值。

首先通过上位机软件,根据通道热电偶的选择进行设置,由于为 0~4 通道 K 型热电偶,故将 FD8250 设置值为 1111H,而 FD8251 设置值为 01H。

其次,本地线圈和寄存器地址与模块地址对应关系如下:

本地地址		模块地址	注释
M10	 ← ─ ─ →	K0	自整定使能控制信号
M100-M104	 ← ─ → ►	Y100-Y104	0~4 通道 PID 控制使能位
D4000-D4004	│ ← ────►	K1-K5	0~4 通道目标温度值
D4050-D4069	 ← ─ ─ →	K7-K26	0~4 通道 P、I、D、DIFF 参数值
D10-D14	←───→	K37-K40	0~4 通道校准温度值

同时,触摸屏控制画面如下图所示:

梯形图语言如下:

14、模拟量温度混合模块 XC-E3AD4PT2DA-H

本章主要介绍 XC-E3AD4PT2DA-H 模块的规格、端子说明、输入定义号的分配、工作模式 设定、外部连接、模数转换图以及相关编程举例。

14-1. 模块特点及规格

14-2. 端子说明

14-3. 输入定义号分配

14-4. 工作模式设定

14-5. 外部连接

14-6. 模数转换图

14-7. 编程举例

14-1. 模块特点及规格

XC-E3AD4PT2DA-H 温度 PID 控制模块, 3 点模拟量输入, 4 点温度输入, 2 点模拟量输出。

模块特点

- 具有 3 通道 14 位精度电流输入、4 通道 PT100 温度输入和 2 通道 10 位精度电压输出。
- 3 通道的电流 0~20mA、4~20mA 输入可选和 2 通道的 电压 0~5V、0~10V 输出可选,通过上位机设定。
- 铂电阻输入,分度号为 PT100。
- 4 通道 PT 输入具有 PID 调节功能。
- 作为 XC 的特殊功能模块,最多可连接 7 台。
- XC-E3AD4PT2DA-H 模拟、数字部分电源隔离处理, 电流输出为拉电流。

模块规格

项目	模拟量电流输入 (AD)	温度输入 (PT)	模拟量电压输出(DA)		
模拟量输入	0~20mA、4~20mA	PT100	-		
测温范围	-	-100~350°C	-		
最大输入范围	0~40mA	-	-		
齿 圳县 绘山 芬 国			0~5V、0~10V(外部负		
医1以里 制 山 氾 団	-	-	载电阻 2KΩ~1MΩ)		
数字输入范围	-	-	10位2进制数(0~1023)		
数字输出范围	14位2进制数(0~16383)	-1000~3500	-		
	1/16383(14Bit); 转换数据		1/1023(10Bit); 转换数		
分辨率	以 16 进制形存入	0.1°C	据以 16 进制形式存入		
	PLC(14Bit)		PLC(10Bit)		
PID 输出值	-	0~K4095	-		
综合精确度	1%	±0.5°C	1%		
转换速度	20ms/1	通道	3ms/1 通道		
模拟量用电源	DC24V±10%, 100mA				
安装方式	可用 M3 的螺丝固定或	【直接安装在 DIN46277(〔宽 35mm〕的导轨上		
外形尺寸		63mm×102mm×73.3mm			

14-2. 端子说明

端子排布

端子信号

いヱいと	辿フタ	PD P
	端千名	信号名
0CH	AI0	0CH 电流输入
	C0	0CH 电流输入公共端
1CH	AI1	1CH 电流输入
	C1	1CH 电流输入公共端
2CH	AI2	2CH 电流输入
	C2	2CH 电流输入公共端
0CH	A0	0CH 温度输入
	B0	-
	C0	0CH 输入公共端
1CH	A1	1CH 温度输入
	B1	-
	C1	1CH 输入公共端
2CH	A2	2CH 温度输入
	B2	-
	C2	2CH 输入公共端
3CH	A3	3CH 温度输入
	B3	-
	C3	3CH 输入公共端
0CH	VO0	0CH 电压输出
	C3	0CH 电压输出公共端
1CH	VO1	1CH 电压输出
	C4	1CH 电压输出公共端
-	24V	+24V 电源
	0V	电源公共端

注意:温度信号仅支持两线制 PT100 铂热电阻输入。

14-3. 输入输出定义号分配

XC 系列模拟量模块不占用 I/O 单元,转换的数值直接送入 PLC 寄存器,通道对应的 PLC 寄存器定义号如下:

第一扩展模块寄存器定义号

通道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID100	ID107	Y100	QD102	
1CH	ID101	ID108	Y101	QD103	
2CH	ID102	ID109	Y102	QD104	KpQD109
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD110
0CH	ID103	ID110	Y103	QD105	DiffOD112
1CH	ID104	ID111	Y104	QD106	DeathQD113
2CH	ID105	ID112	Y105	QD107	
3CH	ID106	ID113	Y106	QD108	
通道	DA 信号	-	-	-	
0CH	QD100	-	-	-	_
1CH	QD101	-	-	-	

第二扩展模块寄存器定义号

通 道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID200	ID207	Y200	QD202	
1CH	ID201	ID208	Y201	QD203	
2CH	ID202	ID209	Y202	QD204	KpQD209
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD210
0CH	ID203	ID210	Y203	QD205	DiffQD211
1CH	ID204	ID211	Y204	QD206	DeathQD213
2CH	ID205	ID212	Y205	QD207	
3CH	ID206	ID213	Y206	QD208	
通道	DA 信号	-	-	-	
0CH	QD200	-	-	-	-
1CH	QD201	-	-	-	

通道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID300	ID307	Y300	QD302	
1CH	ID301	ID308	Y301	QD303	
2CH	ID302	ID309	Y302	QD304	KpQD309
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD310
0CH	ID303	ID310	Y303	QD305	DiffOD312
1CH	ID304	ID311	Y304	QD306	DeathQD313
2CH	ID305	ID312	Y305	QD307	
3CH	ID306	ID313	Y306	QD308	
通道	DA 信号	-	-	-	
0CH	QD300	-	-	-	_
1CH	QD301	-	-	-	

第三扩展模块寄存器定义号

第四扩展模块寄存器定义号

通道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID400	ID407	Y400	QD402	
1CH	ID401	ID408	Y401	QD403	
2CH	ID402	ID409	Y402	QD404	KpQD409
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD410
0CH	ID403	ID410	Y403	QD405	DiffOD412
1CH	ID404	ID411	Y404	QD406	DeathQD413
2CH	ID405	ID412	Y405	QD407	
3CH	ID406	ID413	Y406	QD408	
通道	DA 信号	-	-	-	
0CH	QD400	-	-	-	-
1CH	QD401	-	-	-	

通道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID500	ID507	Y500	QD502	
1CH	ID501	ID508	Y501	QD503	
2CH	ID502	ID509	Y502	QD504	KpQD509
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD510
0CH	ID503	ID510	Y503	QD505	Diff0D512
1CH	ID504	ID511	Y504	QD506	DeathQD513
2CH	ID505	ID512	Y505	QD507	
3CH	ID506	ID513	Y506	QD508	
通道	DA 信号	-	-	-	
0CH	QD500	-	-	-	-
1CH	QD501	-	-	-	

第五扩展模块寄存器定义号

第六扩展模块寄存器定义号

通道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID600	ID607	Y600	QD602	
1CH	ID601	ID608	Y601	QD603	
2CH	ID602	ID609	Y602	QD604	KpQD609
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD610
0CH	ID603	ID610	Y603	QD605	DiffOD612
1CH	ID604	ID611	Y604	QD606	DeathQD613
2CH	ID605	ID612	Y605	QD607	
3CH	ID606	ID613	Y606	QD608	
通道	DA 信号	-	-	-	
0CH	QD600	-	-	-	-
1CH	QD601	-	-	-	

通道	AD 信号	PID 输出值	PID 控制启停位	设定值	PID 参数: Kp、Ki、 Kd、控制范围 Diff、 死区范围 Death
0CH	ID700	ID707	Y700	QD702	
1CH	ID701	ID708	Y701	QD703	
2CH	ID702	ID709	Y702	QD704	KpQD709
通道	PT 信号	PID 输出值	PID 控制启停位	设定值	KiQD710
0CH	ID703	ID710	Y703	QD705	DiffOD712
1CH	ID704	ID711	Y704	QD706	DeathQD713
2CH	ID705	ID712	Y705	QD707	
3CH	ID706	ID713	Y706	QD708	
通道	DA 信号	-	-	-	
0CH	QD700	-	-	-	-
1CH	QD701	-	-	-	

第七扩展模块寄存器定义号

说明:

● 启动信号 (Y): 当 Y 为 0 时关闭 PID 控制,为 1 时开启 PID 控制。

14-4. 工作模式设定

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器 (FD) 设置

配置面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块

之后出现以下配置面板,选择对应的模块型号和配置信息。

PLC1 - 扩展模块 设置	1	2
 PLC配置 ● PLC 串口 ● PLC 串口 ● PLC 串口 ● BD ○ CAN ● M GAN ● U 新电区域保存 	 #1 BD XC-3AD4PT2DA : 3AD #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块 	送择模块: LTC-3AD4PT2DA ● 取消模块 XC-3AD4PT2DA AD通道1: 电流: 4-20mA ▼ AD通道2: 电流: 0-20mA ▼ AD通道2: 恋波: 1/2滤波 ▼ AD通道3: 电流: 0-20mA ▼ AD通道2: 恋波: 1/2滤波 ▼ AD通道3: 电流: 0-20mA ▼ AD通道3: 恋波: 1/2滤波 ▼ PT通道1: 悲波: 1/2滤波 ▼ DA通道1: 电压: 0-10V ▼ PT通道3: 滤波: 1/2滤波 ▼ DA通道2: 电压: 0-5V ▼ PT通道4: 滤波: 1/2滤波 ▼ PT 回当4: 取消

第一步:在图示'2'处选择对应的模块型号;

第二步:完成第一步后'1'处会显示出对应的型号;

第三步: 在'3'处可以选择 AD 对应的电流范围, DA 对应的电压范围、PT 对应的滤波方式; 第四步: 配置完成后点击"写入 PLC", 然后点击"确定"。之后再下载用户程序, 运行程序后, 此配置即可生效。(注: V3.3 以下版本的软件配置后, 需要把 PLC 断电重启才能生效。) Flash 寄存器设置

扩展模块输入输出模式可以通过 PLC 内部的特殊 FLASH 数据寄存器 FD 进行设置。如下所示:

模 块	通道编号				
1#模块	FD8250	FD8251	FD8252		
2#模块	FD8258	FD8259	FD8260		
3#模块	FD8266	FD8267	FD8268		
4#模块	FD8274	FD8275	FD8276		
5#模块	FD8282	FD8283	FD8284		
6#模块	FD8290	FD8291	FD8292		
7#模块	FD8298	FD8299	FD8270		

注:如上所示每个寄存器设定4个通道的模式,每个寄存器的共有16个位,从低到高每4个位 依次设置4个通道的模式。

以1#模块为例:

▶1CH(DA)

FD 中的位定义

下面以第一个模块为例说明一下设置方式:

寄存器 FD8250:

输入通道1(AD)			输入通道0(AD)				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00: 1/2 滤	波			00: 1/2 滤	波		
01: 不滤液	支	-	0: 0~20mA	01: 不滤》	皮	-	0: 0~20mA
10: 1/3 滤	波		1: 4~20mA	10: 1/3 滤波			1: 4~20mA
11: 1/4 滤	波			11: 1/4 滤波			
输入通道 3 (PT)			输入通道 2 (AD)				
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
00: 1/2 滤	波			00: 1/2 滤波			
01: 不滤液	支	-		01: 不滤波		-	0: 0~20mA
10: 1/3 滤	波			10: 1/3 滤波			1: 4~20mA
11.1/4 滤	波			11: 1/4 滤	波		

寄存器 FD8251:

输入通道 5 (PT)			输入通道 4 (PT)					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
00: 1/2 滤	波			00: 1/2 滤	波			
01: 不滤》	皮	-		01: 不滤》	皮	-		
10: 1/3 滤	波			10: 1/3 滤波				
11: 1/4 滤	波			11: 1/4 滤	波			
输出通道(0 (DA)			输入通道 6 (PT)				
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
				00: 1/2 滤	波			
-		-	0: 0~10V	01: 不滤波		-		
			1: 0~5V	10: 1/3 滤波				
				11: 1/4 滤	波			

寄存器 FD8252:

-				输出通道1(DA)						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
-		-	-	-	-	0: 0~10V				
						1: 0~5V				

14-5. 外部连接

外部连接时,注意以下两个方面:

- 外接+24V 电源时,请使用 PLC 本体上的 24V 电源,避免干扰。
- 为避免干扰,应对信号线采取屏蔽措施。

温度输入接线

注意:温度信号仅支持两线制 PT100 铂热电阻输入。

模拟量接线

14-6. 模数转换图

输入模拟量与转换的数字量关系如下表所示:

输出的数字量与其对应的模拟量数据的关系如下表所示:

注意: 当输入数据超出 K1023 时, D/A 转换的输出模拟量数据保持 5V、10V 不变。

PT100 的输入特性如下表所示:

14-7. 编程举例

例 实时读取7个通道的数据,写入2个通道的数据(以第1个模块为例)

编程:

MOV	1 100	
	ID100	D0
- MOV	ID101	D1
MOV	ID102	D2
	1	1
MOV	ID103	D3
	1	1
MOV	ID104	D4
	1	1
MOV	ID105	D5
MOV	ID106	D6
MOV	D10	QD100
		I
MOV	D11	QD101
L	1	1
	END]
-	- MOV - MOV - MOV - MOV - MOV - MOV	- MOV ID101 - MOV ID102 - MOV ID103 - MOV ID104 - MOV ID104 - MOV ID106 - MOV D10 - MOV D11

输入第 0 通道的 AD 数据写入数据寄存器 D0 输入第 1 通道的 AD 数据写入数据寄存器 D1 输入第 2 通道的 AD 数据写入数据寄存器 D2 输入第 3 通道的温度数据写入数据寄存器 D3 输入第 4 通道的温度数据写入数据寄存器 D4 输入第 5 通道的温度数据写入数据寄存器 D5 输入第 6 通道的温度数据写入数据寄存器 D5 数据寄存器 D10 写入数据给输出第 0 通道 数据寄存器 D11 写入数据给输出第 1 通道

15、模拟量温度混合模块 XC-E2AD2PT2DA

本章主要介绍 XC-E2AD2PT2DA 模块的规格、端子说明、数据地址说明、读写数据指令说明、外部连接、模数转换图以及相关编程举例。

15-1. 模块特点及规格

15-2. 端子说明

15-3. 数据地址说明

15-4. 读写数据指令说明

15-5. 外部连接

15-6. 模数转换图

15-7. 编程举例

15-1. 模块特点及规格

XC-E2AD2PT2DA 作为PID 温度控制模块,支持2通道 16 位精度模拟量输入、2通道PT100 温度输入和2通道 10 位精度模拟量输出。该模块集成2路独立温度采集,具有 PID 自整定、独 立 PID 参数设置、本体通讯读写等功能。因此,基于此模块,可与 PLC、触摸屏、计算机等组 成分布式温度控制系统。

模块特点	
1000111 M	

- 具有2通道16位精度模拟量输入、2通道PT100温度输入和2通道10位精度电压输出。
- 2 通道的电流、电压可选,电流 0~20mA、4~20mA 可选; 电压 0~5V、0~10V 可选,通过上位机设定。
- 2 通道 PT 输入具有 PID 调节功能。
- 采用 DC-DC 电源隔离设计,增强系统抗干扰能力。
- 显示温度精度为 0.01℃。
 - 独立设置每路温度通道 PID 参数值,具有单独寄存器地 址空间。
 - 支持 PID 实时自整定功能。允许设备在各种状态下(冷态、加热状态、过渡状态等),进行 PID 自整定,得到合适 PID 整定值。
- 基于 PLC 本体通讯指令 FROM 和 TO 指令进行数据交换,增加产品运用灵活性。节省交互数据量,扩大数据存储空间。

模块规格

项目	杉	模拟量输入(AD)	温度输入 (PT)	模打	以量电压输出(DA)		
古圳	电流	0~20mA, 4~20mA	DT100				
医拟里肋八	电压	0~5V, 0~10V	P1100		-		
测温范围		-	-100~327℃	-			
最大输入安全		0 ~ . 10 ~ 1					
范围		0 ⁷ ~40mA	-		-		
模拟量输出				电压	0~10V、0~5V		
范围		-	-	电流	0~20mA, 4~20mA		
数字输入范围		-	-	10 位	2 进制数(0~1023)		
数字输出范围	16位	2 进制数(0~65535)	-10000~32767		-		
分辨率		1/65535 (16Bit)	0.01 °C		1/1023(10Bit)		
PID 输出值		-	0~K4095		-		
综合精确度		0.8%	±0.01°C		0.8%		
转换速度		2ms/1 通道			2ms/1 通道		

模拟量用电源	DC24V±10%, 100mA
安装方式	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上

适用环境

- PLC本体:硬件版本 V3.1f 及以上版本。
- 编程软件: XCPPro V3.1b 及以上版本。
- 温度传感器: 铂热电阻 PT100。

15-2. 端子说明

端子排布

对于 XC-E2AD2PT2DA 温度控制模块而言,端子台排列如下所示:

 0V
 •
 V00
 V01
 C01

 24V
 •
 •
 A00
 C00
 A01

 B0
 A1
 C1
 A10
 V11
 C11

 A0
 C0
 B1
 V10
 C10
 A11

名称	端子定义		注释	
输入	А, В, С	温度输入通道	模拟量输入, 铂热电 327℃)	,阻 PT100 温度传感器(-100℃~
端子	VI0, VI1	 温度输入通道 模拟量输入通道 模拟量输出通道 电源输入 	电压模拟量输入	0~10V 或者 0~5V
	·····································	医14里 11八 世 但	电流模拟量输入	0~20mA 或者 4~20mA
输出	VO0, VO1	措 州 是 於山 涌 送	电压模拟量输出	以数字量形式,范围: 0~1023
端子	AO0, AO1	[[[[] [] [] [] [] [] [] [] [电流模拟量输出	以数字量形式,范围: 0~1023
电源	24V, 0V	电源输入	24V: +24V 电源	可接 XC 本体 24V 输出或单独
输入			0V: 电源公共端	接开关电源

三线制 PT100 铂热电阻的输入接线方式,具体方式如下:

其中,对于一般的三线制 PT100 铂热电阻,可根据 导线颜色区分其接线方式,其中相同颜色的两根导线 可随机接至 B0 及 C0 端子侧,另一端可接至 A0 端。

15-3. 数据地址说明

15-3-1. 工作模式定义

工作模式的设定有以下两种方法可选(这2种方式的效果是等价的):

- 1: 通过设置面板配置
- 2: 通过 Flash 寄存器设置

配置面板配置

将编程软件打开,点击菜单栏的 PLC设置(C),选择扩展模块:

之后出现以下配置面板,选择对应的模块型号和配置信息:

PLC1 - 扩展模块 设置	1	2	×
PLE 配置 ·································	#1 BD XC-2PT2AD2DA-P : 6 #2 未挂模块 #3 未挂模块 #4 未挂模块 #5 未挂模块 #6 未挂模块 #7 未挂模块	选择模块 XC-2PT2AD2DA-P 取消模块 XC-2PT2AD2DA-P AD通道1: 电流 4-20mA 3 AD通道2: 电压 0-10V 4 DA通道1: 电压 0-10V 4 DA通道2: 电流 0-20mA 4 <u>0-20mA 4</u> -20mA	
	4 <u>III</u> +	读取PLC 写入PLC 确定 耳	则消

在图示 '2' 处选择对应的模块型号,完成后 '1' 处会显示出对应的型号,另外在 '3' 处可以选择 AD、DA 通道的电压或电流配置。

配置完成后点击"写入 PLC",然后点击"确定"。之后再下载用户程序,运行程序后,此 配置即可生效。

Flash 寄存器设置

对于 XC-E2AD2PT2DA 模块而言,其模式的配置通过 Flash 寄存器设置,可以通过 PLC 内部的特殊数据寄存器进行设定,如下表所示:

模 块	设置寄存器编号						
1#模块	FD8250	FD8251					
2#模块	FD8258	FD8259					
3#模块	FD8266	FD8267					
4#模块	FD8274	FD8275					
5#模块	FD8282	FD8283					
6#模块	FD8290	FD8291					
7#模块	FD8298	FD8299					

对于每个寄存器而言,主要为通道的模式配置和范围设定,下面以模块号为1的设置为例 说明。

寄存器 FD8250 设置分配值:

		PT 通道 1		PT 通道 0						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		AD 通道 1		AD 通道 0						
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8			
		0: 电压	0: 0~10V			0: 电压	0: 0~10V			
			1: 0~5V				1: 0~5V			
		1: 电流	0: 0~20mA			1: 电流	0: 0~20mA			
			1: 4~20mA				1: 4~20mA			

寄存器 FD8251 设置分配值:

]	DA 通道 1		DA 通道 0				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		0: 电压	0: 0~10V			0:电压	0: 0~10V	
		1: 0~5V				1: 0~5V		
1: 电流		0: 0~20mA			1:电流	0: 0~20mA		
			1: 4~20mA				1: 4~20mA	
			剩余寄花	字器位				
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	

例如: 当 XC-E2AD2PT2DA 模块为第 2 个模块,同时 AD 通道 0 选择为电压型,范围配置为: 0~5V, AD 通道 1 采用默认值,而 DA 通道 0 选择电流型,范围配置为 4~20 m A,通道 1 则选择为默认值。那么:在寄存器 FD8250 及 FD8251 中的设置数据为:

								位数	数值							
FD8250	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

因此,在寄存器 FD8250 中的数值为 512。

		位数值														
FD8251	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

因此,在寄存器 FD8251 中的数值为 3。

综上, 故在寄存器 FD8250, 寄存器 FD8251 中的数值分别为 512 与 3。

15-3-2. 模块数据地址概述

对于 XC-E2AD2PT2DA 控制模块,存在与控制系统对象密切相关的各种参数,如采样值, PID 触点输出值等,以下将对其参数作具体说明。

(1) 对于2通道温度采集输入及2通道模拟量输入涉及参数如下表所示:

相关参数	注释及说明				
	通道	PT0 (0.01℃)	PT1 (0.01°C)	AD0	AD1
通道显示当前值	模块1	ID100	ID101	ID102	ID103
	模块 2	ID200	ID201	ID202	ID203
		ID×00	ID×01	ID×02	ID×03
	模块 7	ID700	ID701	ID702	ID703
DID 曲古於山	模块1	X100	X101	X102	X103
PID 朏忌制出	模块 2	X200	X201	X202	X203
		X×00	X×01	X×02	X×03
	模块 7	X700	X701	X702	X703
这次这个时间	模块1	X110	X111	X112	X113
通担连按断路位测 (0.为培维 1.为断	模块 2	X210	X211	X212	X213
(0 八按线,1 八函		X×10	X×11	X×12	X×13
	模块 7	X710	X711	X712	X713
DID 点數合件沿台/0	模块1	X120	X121	X122	X123
PID 日登定错误位(0	模块 2	X220	X221	X222	X223
入止吊, 1 八日登止 会粉进得)		X×20	X×21	X×22	X×23
	模块 7	X720	X721	X722	X723
	模块1	Y100	Y101	Y102	Y103
估化通送信号	模块 2	Y200	Y201	Y202	Y203
便能通道信亏		Y×00	Y×01	Y×02	Y×03
	模块 7	Y700	Y701	Y702	Y703
	自整定触发信号,当置1时进入自整定阶段。				
自整定 PID 控制位	自整定结束后,PID 参数值和周期数值被刷新,并自动将该控制位清0。				
	用户亦可读出其状态,为1时表示处于自整定过程中,为0时表示未进行自整定或自				
	整定已经结束。				
PID 输出值	数字量输出值取值范围为 0~4095。				

(运算结果)	在 PID 输出为模拟量控制(如蒸汽阀门开度或可控硅导通角)时,可将该数值传送给
	模拟量输出模块,以实现控制要求。
PID 参数值 (P、I、D)	通过 PID 自整定得到的最佳参数值。 若当前 PID 控制不能很好的满足控制要求,用户亦可直接写入经验 PID 参数,模块依 昭田自设定的 PID 参数进行 PID 控制
	PID 質注在设定退度的+Diff 设置范围内起作田 在实际控制环境中 倘若当前值任
PID 运算范围 (Diff)	$T_{\mathcal{C}_{\mathcal{C}_{\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}}}}}} = T_{Diff}$ 时, PID 输出为最大值; 而当前值高于 $T_{\mathcal{C}_{\mathbb{C}_{\mathbb{Z}_{\mathbb{Z}}}}} + T_{Diff}$ 时 PID 输
	出为最低值。(单位依据通道类型及设置范围不同而不同)
偏差值 δ	(采样值+偏差值δ)/10=显示值。此时通道采样值就可以与实际值相等或尽可能接近。该参数为有符号数,停电带保持,出厂缺省值为0。(单位依据通道类型及设置范围不同而不同)
设定温度值	控制系统的目标值。对于温度控制,其调整范围为0~1000℃,精度为0.01℃。
控温周期	控制周期调整范围 0.5 秒~200 秒,最小精度为 0.1 秒。写入值为实际控温周期值乘以
(单位 0.1 秒)	10,即 0.5 秒控制周期需写入 5,200 秒控制周期需写入 2000。
实际值	 用户认为实际值与模块通道显示值不一致时,可以将已知的环境实际值写入该参数。 模块在被写入的这一刻,将偏差值δ计算出来,并保存。 计算偏差值δ=环境实际值-采样当前值。(单位依据通道类型及设置范围不同而不同) 例如:在热平衡状态,用户用水银温度计测得环境温度为60℃,当时显示温度为55℃ (对应采样温度550),温度偏差值δ=0。此时,用户向该参数写入600,温度偏差值δ 被重新计算为50(5℃),于是显示温度 = (采样温度值+温度偏差值δ)/10=60℃。 **注意:用户输入环境实际值时,确认和环境值相一致。该数据非常重要,一旦输入 错误,会导致计算偏差值δ严重错误,进而影响显示值。
自整定输出幅度	自整定时的输出量,以%为单位,100 就表示占空比为满刻度输出的100%,80 为满刻 度输出的80%。

对于温度采样通道及模拟量输入通道,其单位根据通道类型及范围配置而有所不同,具体 内容如下:

通道名称	单 位		
温度采集通道	0.01°C		
	电压输入	0~10V	$1.5 \times 10^{-4} V$
- - 樟 扣 - 聶 诸		0~5V	7.6×10 ⁻⁵ V
快快重炮炮	电流输入	0~20mA	3.1×10 ⁻⁴ mA
		4~20mA	2.4×10 ⁻⁴ mA

(2) 对于2通道模拟量输出涉及参数如下表所示:

相兰会粉	注释及说明			
伯大参致	通道	DA0	DA1	
	模块 1	QD100	QD101	
- - - - - - - - - - - - - - - - - - -	模块 2	QD200	QD201	
[佚1y 里 刊		QD×00	QD ×01	
	模块 7	QD700	QD701	

15-3-3. 相关地址定义

用户使用此模块过程中,涉及相关参数读写操作对象,以下对其地址排列作一些说明:

1.	读指令	(FROM)	操作对象地址排列如下:

地址	描述
K0	自整定 PID 控制状态信号
K1	通道 PT0 的 PID 输出值(运算结果)
K2	通道 PT1 的 PID 输出值(运算结果)
K5	通道 PTO 的 PID 参数值(P)
K6	通道 PTO 的 PID 参数值(I)
K7	通道 PT0 的 PID 参数值(D)
K8	通道 PT0 的 PID 参数值(Diff)
К9	通道 PT1 的 PID 参数值(P)
K10	通道 PT1 的 PID 参数值(I)
K11	通道 PT1 的 PID 参数值(D)
K12	通道 PT1 的 PID 参数值(Diff)
K21	通道 PTO 的温度偏差值
K22	通道 PT1 的温度偏差值

2. 写指令(TO)操作对象地址排列如下:

地址	描述
K0	自整定 PID 触发信号
K1	加热/冷却选择位
K2	通道 PT0 的设定温度值
K3	通道 PT1 的设定温度值
K6	通道 PTO 的 PID 参数值(P)
K7	通道 PTO 的 PID 参数值(I)
K8	通道 PT0 的 PID 参数值(D)
К9	通道 PT0 的 PID 参数值(Diff)
K10	通道 PT1 的 PID 参数值(P)
K11	通道 PT1 的 PID 参数值(I)
K12	通道 PT1 的 PID 参数值(D)
K13	通道 PT1 的 PID 参数值(Diff)
K22	通道 PT0 的控温周期
K23	通道 PT1 的控温周期
K26	通道 PT0 的实际温度值
K27	通道 PT1 的实际温度值
K30	通道 PT0 的自整定输出幅度
K31	通道 PT1 的自整定输出幅度
K34	通道 PT0 的温度偏差值
K35	通道 PT1 的温度偏差值

另外,模块可保存设定温度值、PID参数值(包括P参数、I参数、D参数、Diff参数)、 温度偏差值、控温周期、自整定输出幅度等参数。当自整定结束或者用户修改时,进行保存;
上电重启后取出进行操作。 各部分参数出厂默认值如下表所示:

参数	友名称		出厂點	犬认值	
设定值		PT0	PT1	CH2	CH3
		0	0	0	0
PID 参数值	P参数	40	40	40	40
	I参数	1200	1200	1200	1200
	D参数	300	300	300	300
	Diff 参数	10	10	10	10
控温周期值。	(0.1s 为单位)	20	20	20	20
偏差值(有符	号数)	0	0	0	0
自整定输出幅	a度值	100	100	100	100

15-4. 读写数据指令说明

15-4-1. 指令说明

PLC本体可通过指令读写 XC-E2AD2PT2DA 模拟量温度混合模块的指定数据区域,以此来 满足用户控制需求。共存在"读取指令 FROM"、"写入指令 TO"两条操作指令,以下将对这两 条指令作详细说明。

注意: 第一个模块的模块号为 K0。

1、参数读取指令 FROM

此指令在触发条件满足时,进行读操作,不满足时不进行,可分为位操作和字操作。 (1)字操作

功能:将指定模块地址中数据信息读取至本体指定寄存器中,以字为操作单位。 操作数说明:

S1: 目标模块号。可用操作数: K、TD, CD, D, FD。

S2: 读模块的首地址。可用操作数: K、TD, CD, D, FD。

S3: 读取寄存器个数 (字数)。可用操作数: K、TD, CD, D, FD。

D1:本体接收寄存器首地址。

(2) 位操作

M1		SI	S2	<u>\$3</u>	Dl
┝───┤ ↑ ┝────	FROM	Kxxx	Kxxx	Kxxx	Mxxx

功能:将指定模块地址中数据信息读取至本体指定地址中,以位为操作单位。 操作数说明:

S1: 目标模块号。可用操作数: K、TD, CD, D, FD。

S2: 读模块的首地址。可用操作数: K、TD, CD, D, FD。

S3: 读取数据个数(位数)。可用操作数: K、TD, CD, D, FD。 D1: 本体接收数据线圈首地址。可操作数: M、Dn.m。

2. 参数写入指令 TO

此指令在触发条件满足时,进行写操作,不满足时不进行,同样可分为位操作和字操作。 (1)字操作

功能:将本体指定寄存器数据信息写入至指定模块地址中,以字为操作单位。 操作数说明:

D1: 目标模块号。可用操作数: K、TD, CD, D, FD。

D2: 写模块的首地址。可用操作数: K、TD, CD, D, FD。

D3: 写入寄存器个数(字数)。可用操作数: K、TD, CD, D, FD。

S1:本体内存放写入数据的寄存器首地址。

(2) 位操作

功能:将本体指定寄存器位数据信息写入至指定模块地址中,以位为操作单位。 操作数说明:

D1: 目标模块号。可用操作数: K、TD, CD, D, FD。

D2: 写模块的首地址。可用操作数: K、TD, CD, D, FD。

D3: 写入数据个数(位数)。可用操作数: K、TD, CD, D, FD。

S1:本体内存放写入数据的线圈首地址。可操作数:M、Dn.m。

15-4-2. 指令应用

1、设定温度

说明:在 D0 输入设定温度值,置位线圈将数据写入模块地址 K1 (PT0 设定温度值)。 例如 D0=2000,表示设定温度值为 20.00℃。

操作数含义:

- (1) TO 写指令
- (2) K0 模块号: 0
- (3) K1 模块内地址: 1
- (4) K1 连续写入字数:1
- (5) D0 数据存放在本体的寄存器: D0

2、设定控温周期

说明:在 D10 输入控温周期,置位线圈将数据写入模块地址 K22(通道 0 控温周期)。 例如 D10=25,表示控温周期为 2.5 秒。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号: 0
 - (3) K22 模块内地址: 22
 - (4) K1 连续写入字数:1
 - (5) D10 数据存放在本体的寄存器: D10

3、自整定输出幅度

说明: 在 D20 输入自整定输出幅度,置位线圈将数据写入模块地址 K30(通道 0 自整定输出幅度)。

例如 D20=80, 表示自整定过程中的输出量为最大可能输出值的 80%。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号: 0
 - (3) K30 模块内地址: 30
 - (4) K1 连续写入字数:1
 - (5) D20 数据存放在本体的寄存器: D20
- 4、自整定触发位置位

说明: 自整定前将 M0~M3 相应位置线圈置位,数据写入模块地址 K0 后开始自整定。若在自整定过程中,复位 M0~M3 中相应线圈并写入模块,模块将退出自整定过程并依照先前 PID 参数进行 PID 控制。

例如将 M0 置 ON 表示即将对第 0 通道进行自整定。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号:0
 - (3) K0 模块内地址: 0
 - (4) K4 连续写入位数: 4
 - (5) M0 数据存放在本体的寄存器: M0~M5。
- 5、读自整定状态位

说明:用户可读取模块自整定状态位,返回至本体的 M10~M13。若某一线圈为 ON,则表示模 块正在对该通道进行自整定,为 OFF 表示自整定未开始或已经结束。

- 操作数含义: (1) FROM 读指令
 - (2) K0 模块号: 0
 - (3) K0 模块内地址: 0
 - (4) K4 连续读取位数:4
 - (5) M10 数据存放到本体的线圈: M10~M13。
- 6、读 PID 参数

说明:用户可读取模块的 PID 参数(通道 Ch0 内 PID 参数值),返回至本体的 D30~D33。D30 中的数据为 P 参数,D31 中的数据为 I 参数,D32 中的数据为 D 参数,D33 中的数据为 Diff 参数。

- 操作数含义: (1) FROM 读指令
 - (2) K0 模块号:0
 - (3) K5 模块内地址: 5
 - (4) K4 连续读取字数: 4
 - (5) D30 数据存放到本体的寄存器: D30~D33
- 7、 写 PID 参数

说明:用户可改写模块的 PID 参数(通道 Ch5 内 PID 参数值),把数据输入本体的 D40~D43 后置位线圈,PID 参数写入模块,模块会以新的 PID 参数进行 PID 运算。

- 操作数含义: (1) TO 写指令
 - (2) K0 模块号: 0
 - (3) K6 模块内地址: 6
 - (4) K4 连续写入字数: 4
 - (5) D40 数据存放在本体的寄存器: D40~D43
- 8、打开使能通道位
- 说明:对于模块号为0的模块,通道0~3对应使能位为Y100~Y103;模块号为1的模块,通道0~3对应使能位为Y200~Y203;以此类推。因此,只要将相应的使能位置ON,就开始对该通道进行 PID 控制。
- 9、读 PID 输出值

说明:模块在 PID 控制过程中,用户可读取 PID 输出值至本体寄存器 D50~D53。

180

操作数含义: (1) FROM 读指令

- (2) K0 模块号: 0
- (3) K1 模块内用户地址: 1
- (4) K4 连续读取字节数: 4
- (5) D50 数据存放到本体的寄存器: D50~ D55

15-5. 外部连接

(1) 对于2通道温度采集,其输入端接线方式如下图所示:

(2) 对于2通道模拟量输入,其输入端接线方式如下图所示:

电压模拟量输入方式如下图所示:

电流模拟量输入方式如下图所示:

(3)对于2通道模拟量输出,其输出端接线方式如下图所示: 电压模拟量输出方式如下图所示:

电流模拟量输出方式如下图所示:

15-6. 模数转换图

对于2路模拟量输入,其模拟量与数字量的转换如下图所示:

注意: 监控两路模拟量通道时, 需先用 MOV 指令, 将 ID 通道的值传送至普通寄存器, 再 用双字模式监控该寄存器。

模块输入的数字量与其对应输出的模拟量数据的关系如下图所示:

15-7. 编程举例

以下将通过举例对 XC-E2AD2PT2DA 的应用加以说明,如下:

整个控制流程如下所示:

该案例通过触摸屏来实现温度控制过程。

- 1. 打开通道0使能位。
- 2. 将相关参数值:包括设定温度值、控温周期、自整定输出幅度等写入模块内对应地址。 此时,模块开始 PID 控制。
- 2. 将通道0自整定控制对应的辅助线圈置位。
- 3. 将自整定触发信息写入模块,模块开始自整定。
- 4. 自整定结束后,转入 PID 控制,同时将 PID 参数读入至本体相关数据寄存器中。 当然,相关参数的设定可通过触摸屏画面进行设置,增强交互性。

本地线圈及 寄存器地址		对应模块 地址	注 释
D0	<→	K2	通道0设定温度值
D1	<>	K22	通道0温控周期值
D2	• • •	K30	通道0输出幅度值
D3	• • •	K6	通道0设定P参数值
D4	◀ →	K7	通道0设定I参数值
D5	←	K8	通道0设定D参数值
D6	<>	К9	通道0设定Diff参数值
D300	◀───	K5	通道0读取P参数值
D301	•	K6	通道0读取I参数值
D302	←	K7	通道0读取D参数值
D303	◄	K8	通道0读取 Diff参数值
M100	►	K0	通道0自整定触发位及状态位

梯形图语言如下:

- M0: 将第0通道使能信号打开的输入执行;
- M1: 将第0通道温度值,设定0通道温控周期值,设定0通道输出幅度值,设定0通道 PID 参数值写入模块对应地址的输入执行;
- M100: 将第0通道自整定使能位打开的输入执行;
- M10: 自整定状态位,即为读取最终 PID, Diff 参数值的输入执行条件。

16、输入输出扩展模块 XC-EnXmY

本章主要介绍 XC-EnXmY 模块的规格、端子说明、输入定义号的分配、外部连接以及相关编程举例。

16-1. 模块特点及规格

16-2. 端子说明

16-3. 输入输出定义号分配

16-4. 外部连接

16-5. 应用举例

16-1. 模块特点及规格

XC 系列 PLC 可外部扩展 XC-nXnY 输入输出模块,每个基本单元可扩展 7 个模块,模块种 类丰富,外形小巧,为更多的输入和输出点提供了可能,满足了实际生产需要。

型号说明

型	号	거 상는 2월 미미
NPN 输入型	PNP 输入型	切 肥 尻 吩
XC-E8X	XC-E8PX	8 通道开关量输入, DC22~26V 供电
XC-E8YR	-	8 通道继电器输出
XC-E8YT	-	8 通道晶体管输出
XC-E8X8YR	XC-E8PX8YR	8 通道开关量输入,8 通道继电器输出,DC22~26V 供电
XC-E8X8YT	XC-E8PX8YT	8 通道开关量输入, 8 通道晶体管输出, DC22~26V 供电
XC-E16X	XC-E16PX	16 通道开关量输入, DC22~26V 供电
XC-E16YR	-	16 通道继电器输出
XC-E16YT	-	16 通道晶体管输出
XC-E16X16YR-E	XC-E16PX16YR-E	16 通道开关量输入,16 通道继电器输出,AC90~265V 供电
XC-E16X16YR-C	XC-E16PX16YR-C	16 通道开关量输入,16 通道继电器输出,DC22~26V 供电
XC-E16X16YT-E	XC-E16PX16YT-E	16 通道开关量输入,16 通道晶体管输出,AC90~265V 供电
XC-E16X16YT-C	XC-E16PX16YT-C	16 通道开关量输入,16 通道晶体管输出,DC22~26V 供电
ХС-ЕЗ2Х-Е	XC-E32PX-E	32 通道开关量输入, AC90~265V 供电
XC-E32X-C	-	32 通道开关量输入, DC22~26V 供电
XC-E32YR-E	-	32 通道继电器输出, AC90~265V 供电
XC-E32YR-C	-	32 通道晶体管输出, DC22~26V 供电
XC-E32YT-E	-	32 通道继电器输出, AC90~265V 供电

模块规格

项目	规格
输入电源电压	DC24V±10% (32 点 I/O 模块为 AC220V±10%)
使用环境	无腐蚀性气体
环境温度	0°C~60°C
环境湿度	5~95%
安装	可用 M3 的螺丝固定或直接安装在 DIN46277 (宽 35mm)的导轨上
从形日士	63mm×102mm×73.3mm(16点及以下)
217167 C J	139mm×102mm×73.3mm(32 点)

16-2. 端子说明

NPN 输入型模块与 PNP 输入型模块端子排列相同。

(1) 对于 XC-E8X 模块,端子台排列如下所示:

24	V	CC	M	Х	1	X	3	X5		X7	7	
0V	CC	MC	X)	X	2	Х4		Х6			
	•					(•		•)	

(2) 对于 XC-E8YR、XC-E8YT 模块,端子台排列如下所示:

					(•	
	•))	•		•)		
 	Y	0	Y	1	Y	2	CO	M3	Y	5	Y	7	

(3) 对于 XC-8X8YR、XC-8X8YT 模块, 端子台排列如下所示:

	24V	CC	DM	Х	1	Х	3	Х	5	X	7	
0V	C	ÓM	X	0	X	2	X	4	X	6		

 Y0
 Y1
 Y2
 C0M3
 Y5
 Y7

 COM0
 COM1
 COM2
 Y3
 Y4
 Y6

(4) 对于 XC-16X 模块, 端子台排列如下所示:

	24	/	CC	M	X1		XC	3	X5	5	X7	7	
0	/	CC	DM	Х	0	X	2	X	4	X	6		
	00	M	¥1	1	¥1	S	¥1	5	¥1	7	-)	

 COM
 X10
 X12
 X14
 X16
 •

(5) 对于 XC-16YR、XC-16YT 模块,端子台排列如下所示:

 Y0
 Y1
 Y2
 COM3
 Y5
 Y7

 COM0
 COM1
 COM2
 Y3
 Y4
 Y6

 Y10
 Y11
 Y12
 COM7
 Y15
 Y17

 COM4
 COM5
 COM6
 Y13
 Y14
 Y16

(6) 对于 XC-16X16YR 模块,端子台排列如下所示:

	Ν)	CO	M	X1		ХЗ	X	(5	Х7	,	X11	X	13	X1	5	X17			
L		FG	CC	DM	X	0	X2		(4	X	6	X1	0	X12	Χ΄	14	X1	6	•		
	01/	-		V		V2		20M1		6	V7		V10	V1	2	0.0	12	V15	V1	7	

24V • COMO Y1 Y3 Y4 Y6 COM2 Y11 Y13 Y14 Y16

(7) 对于 XC-32X 模块,端子台排列如下所示:

N		• C(OM X	(1 X	(3)	(5 X	(7 X	11 X	13 X	15 X [·]	17 0	
L	FG	COM	XO	X2	X4	X6	X10	X12	X14	X16	•	

 OV
 ●
 COM
 X21
 X23
 X25
 X27
 X31
 X33
 X35
 X37
 ●

 24V
 ●
 COM
 X20
 X22
 X24
 X26
 X30
 X32
 X34
 X36
 ●

(8) 对于 XC-32YR 模块,端子台排列如下所示:

. N		•) Y	0	Y2	CO	M1	Y5	Y Y	7	Y10	0 Y'	12	CON	13 Y	15	Y17	
L	F	G	COMO	Y1		(3	Y4	Y	'6	CC	DM2	Y11	Y1	3	Y14	Y10	5	
0	V	•	• Y	20	Y22	COM	5	Y25	Y2	7	Y3	0 Y3	2	COM	7 Y	35	Y37	
24V			COM4	Y21	I Y	23	Y24	Y:	26	CO	M6	Y31	Y3	3	Y34	Y30	5	

注意: 各型号模块的输入点的公用端或有不同, 请以具体实物标签为准。

16-3. 输入输出定义号分配

XC 系列 PLC 可以扩展 7 个扩展模块, 其输入输出端子地址如下:

(注意:此处以 NPN 型为例, PNP 型的端子定义、地址及适用模块同 NPN 型。)

第一扩展模块输入端子定义:

端子号	地址	适用模块		
X0	X100	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X1	X101	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X2	X102	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X3	X103	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X4	X104	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X5	X105	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X6	X106	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X7	X107	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X10	X110	XC-E16X、XC-E16X16YR、XC-E32X		
X11	X111	XC-E16X、XC-E16X16YR、XC-E32X		
X12	X112	XC-E16X、XC-E16X16YR、XC-E32X		
X13	X113	XC-E16X、XC-E16X16YR、XC-E32X		
X14	X114	XC-E16X、XC-E16X16YR、XC-E32X		
X15	X115	XC-E16X, XC-E16X16YR, XC-E32X		
X16	X116	XC-E16X, XC-E16X16YR, XC-E32X		
X17	X117	XC-E16X、XC-E16X16YR、XC-E32X		
X20	X120	XC-E32X		
X21	X121	XC-E32X		
X22	X122	XC-E32X		
X23	X123	XC-E32X		
X24	X124	XC-E32X		
X25	X125	XC-E32X		
X26	X126	XC-E32X		
X27	X127	XC-E32X		
X30	X130	XC-E32X		
X31	X131	XC-E32X		
X32	X132	XC-E32X		
X33	X133	XC-E32X		
X34	X134	XC-E32X		
X35	X135	XC-E32X		
X36	X136	XC-E32X		
X37	X137	XC-E32X		

第一扩展模块输出端子定义:

端子号	地址	适用模块
Y0	Y100	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y1	Y101	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y2	Y102	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y3	Y103	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y4	Y104	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y5	Y105	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y6	Y106	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y7	Y107	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y10	Y110	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y11	Y111	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y12	Y112	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y13	Y113	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y14	Y114	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y15	Y115	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y16	Y116	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y17	Y117	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y20	Y120	XC-E32YR
Y21	Y121	XC-E32YR
Y22	Y122	XC-E32YR
Y23	Y123	XC-E32YR
X24	Y124	XC-E32YR
X25	Y125	XC-E32YR
Y26	Y126	XC-E32YR
Y27	Y127	XC-E32YR
Y30	Y130	XC-E32YR
Y31	Y131	XC-E32YR
Y32	Y132	XC-E32YR
Y33	Y133	XC-E32YR
Y34	Y134	XC-E32YR
Y35	Y135	XC-E32YR
Y36	Y136	XC-E32YR
Y37	Y137	XC-E32YR

第二扩展模块输入端子定义:

端子号	地址	适用模块
X0	X200	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X1	X201	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X2	X202	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X3	X203	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X4	X204	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X5	X205	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X

X6	X206	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X7	X207	XC-E8X、XC-E8X8YR /T、XC-E16X、XC-E16X16YR、XC-E32X
X10	X210	XC-E16X、XC-E16X16YR、XC-E32X
X11	X211	XC-E16X、XC-E16X16YR、XC-E32X
X12	X212	XC-E16X、XC-E16X16YR、XC-E32X
X13	X213	XC-E16X、XC-E16X16YR、XC-E32X
X14	X214	XC-E16X、XC-E16X16YR、XC-E32X
X15	X215	XC-E16X、XC-E16X16YR、XC-E32X
X16	X216	XC-E16X、XC-E16X16YR、XC-E32X
X17	X217	XC-E16X、XC-E16X16YR、XC-E32X
X20	X220	XC-E32X
X21	X221	XC-E32X
X22	X222	XC-E32X
X23	X223	XC-E32X
X24	X224	XC-E32X
X25	X225	XC-E32X
X26	X226	XC-E32X
X27	X227	XC-E32X
X30	X230	XC-E32X
X31	X231	XC-E32X
X32	X232	XC-E32X
X33	X233	XC-E32X
X34	X234	XC-E32X
X35	X235	XC-E32X
X36	X236	XC-E32X
X37	X237	XC-E32X

第二扩展模块输出端子定义:

端子号	地址	适用模块		
Y0	Y200	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y1	Y201	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y2	Y202	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y3	Y203	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y4	Y204	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y5	Y205	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y6	Y206	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y7	Y207	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y10	Y210	XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y11	Y211	XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y12	Y212	XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y13	Y213	XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y14	Y214	XC-E16YR/T、XC-E16X16YR、XC-E32YR		
Y15	Y215	XC-E16YR/T、XC-E16X16YR、XC-E32YR		

	-	
Y16	Y216	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y17	Y217	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y20	Y220	XC-E32YR
Y21	Y221	XC-E32YR
Y22	Y222	XC-E32YR
Y23	Y223	XC-E32YR
X24	Y224	XC-E32YR
X25	Y225	XC-E32YR
Y26	Y226	XC-E32YR
Y27	Y227	XC-E32YR
Y30	Y230	XC-E32YR
Y31	Y231	XC-E32YR
Y32	Y232	XC-E32YR
Y33	Y233	XC-E32YR
Y34	Y234	XC-E32YR
Y35	Y235	XC-E32YR
Y36	Y236	XC-E32YR
Y37	Y237	XC-E32YR

••••••• 模块输入点数为 8-32 点,输出点数也为 8-32 点,输出类型分为继电器型和晶体管型, 且第 n 个模块的地址以 Xn00 及 Yn00 开始,依次类推。

第七扩	•展模块输入	、端子定义:
-----	--------	--------

端子号	地址	适用模块		
X0	X700	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X1	X701	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X2	X702	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X3	X703	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X4	X704	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X5	X705	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X6	X706	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X7	X707	XC-E8X、XC-E8X8YR/T、XC-E16X、XC-E16X16YR、XC-E32X		
X10	X710	XC-E16X、XC-E16X16YR、XC-E32X		
X11	X711	XC-E16X、XC-E16X16YR、XC-E32X		
X12	X712	XC-E16X、XC-E16X16YR、XC-E32X		
X13	X713	XC-E16X、XC-E16X16YR、XC-E32X		
X14	X714	XC-E16X、XC-E16X16YR、XC-E32X		
X15	X715	XC-E16X、XC-E16X16YR、XC-E32X		
X16	X716	XC-E16X、XC-E16X16YR、XC-E32X		
X17	X717	XC-E16X、XC-E16X16YR、XC-E32X		
X20	X720	XC-E32X		
X21	X721	XC-E32X		
X22	X722	XC-E32X		

X23	X723	XC-E32X
X24	X724	XC-E32X
X25	X725	XC-E32X
X26	X726	XC-E32X
X27	X727	XC-E32X
X30	X730	XC-E32X
X31	X731	XC-E32X
X32	X732	XC-E32X
X33	X733	XC-E32X
X34	X734	XC-E32X
X35	X735	XC-E32X
X36	X736	XC-E32X
X37	X737	XC-E32X

第七扩展模块输出端子定义:

端子号	地址	适用模块
Y0	Y700	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y1	Y701	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y2	Y702	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y3	Y703	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y4	Y704	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y5	Y705	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y6	Y706	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y7	Y707	XC-E8YR/T、XC-E8X8YR/T、XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y10	Y710	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y11	Y711	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y12	Y712	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y13	Y713	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y14	Y714	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y15	Y715	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y16	Y716	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y17	Y717	XC-E16YR/T、XC-E16X16YR、XC-E32YR
Y20	Y720	XC-E32YR
Y21	Y721	XC-E32YR
Y22	Y722	XC-E32YR
Y23	Y723	XC-E32YR
X24	Y724	XC-E32YR
X25	Y725	XC-E32YR
Y26	Y726	XC-E32YR
Y27	Y727	XC-E32YR
Y30	Y730	XC-E32YR
Y31	Y731	XC-E32YR
Y32	Y732	XC-E32YR

Y33	Y733	XC-E32YR
Y34	Y734	XC-E32YR
Y35	Y735	XC-E32YR
Y36	Y736	XC-E32YR
Y37	Y737	XC-E32YR

16-4. 外部连接

(1) 对于 XC-E8X8YR 模块, 输入端接线方式如下图所示:

其输出端接线方式如下图所示:

(2) 对于 XC-E16PX 模块, 输入端接线方式如下图所示:

(3) 对于 XC-E16YR 模块,输出端接线方式如下图所示:

对于 XC-E16YT 模块,输出端接线方式如下图所示:

16-5. 应用举例

在本章节中,将对此模块的应用进行具体举例,信捷系列 XC 系列 32 点 PLC 为从站,带一个扩展 XC-E8X8YR,与信捷系列人机界面进行通讯。

扩展模块 XC-E8X8YR 与信捷 TH765-MT 触摸屏之间的通讯

在本例中,触摸屏作为通讯主站,将扩展模块的输入点状态读至触摸屏本地线圈状态上,将触摸屏内部线圈状态写至扩展模块输出点上,其对应关系如下所示:

(1)硬件连接:将模块 XC-E8X8YR 挂到 XC3-32R-E 上,将 XC3-32R-E 的 RS485 通讯端 AB 分别与 TH765-MT 的 PLC 口 AB 端相连接。

通讯参数设置:选择通讯参数:波特率为19200bps,8位数据位,1位停止位,偶校验, PLC的 Modbus 站号为1,站号设定后需重新上电。

对于 TH765-MT 触摸屏而言: PLC 类型选择 "Modbus RTU (显示器为 Master)",选择通 讯参数波特率为 19200bps, 8 位数据位, 1 位停止位,偶校验。

(2) 程序应用:

模块输入输出点地址与本地线圈地址对应关系如下:

本地线圈地址		模块输入输出点	对应 MODBUS 地址
PSB500	└	X100	K16448
PSB501	 ←───→	Y100	K18496

(3) 画面编辑:

在触摸屏内画面如下:

进行扩展模块 X100 的状态编辑,放置指示灯,指示灯对象类型为 0X,对应 Modbus 地址 线圈为 16448;选择功能键按钮,按键功能为按下时将 X100 的线圈状态复制到触摸屏内部 PSB500 号线圈;编辑触摸屏内部线圈 PSB500 指示灯,选择指示灯对象类型为 PSB,指定线圈 号为 500。

应报站号 0 站点号 1 对象 对象类型 0x I 16448 □ 间接指定	- 站点		
	- 対象 - 対象 - 対象类型	Ox	
	4 <u>00</u>	□ 旧接指定	

女雄功能 <u>这下即</u> 徐陽复制	▲ 可远切能 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
目的线圈:PSB500 源线圈:0x16448	赤加」 夏位线圈 线圈取反
	修改 线圈复制 画面跳转 设置数据
	田除山 新花園 一一一時 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	下移 大利留口
	上移

- 站点 设备				-
- 对暴 对暴	t t t t t t t t t t t t t t t t t t t	, 500 间接指定		
		 	-	

同样,编辑触摸屏内部线圈 PSB501 号线圈状态,放置指示灯按钮,指示灯按钮对象类型为 PSB,指定线圈号为 501;选择功能键按钮,按键功能为按下时将 PSB501 的线圈状态复制到扩展模块 Y100 号线圈;扩展模块 Y100 的状态编辑,选择指示灯按钮,指示灯对象类型为 0X, 对应 Modbus 地址线圈为 18496。

可选功能

前へ宿口

法管 导人CSV委 导出CSV委 函数调用

取消 应用 (<u>A</u>)

×

示灯按钮 🚬	
】 才象 │常规 │ 外观 │ 颜色 │ 位置 │	
操作对象	
「站点	
设备 PLC□ ▼	
虚拟站号 站点号	功能键
	功能 按键 控制 颜色 位置
对象 对象类刑 [200]	按键功能 按下时
	线圈复制 日的线圈:0~18406
348(2010)	源线圈:PSB501 —
□ 曲江 初家 □ 站占	
I PISTEXE	
「	
u 5	×
▶ ↓」「↓」」 ● ↓」「↓」」 ● ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
Les Leave Leven Leven L	1
	1
	1
虚拟站号 0 站点号 1	1

画面编辑完毕,将画面下载到触摸屏内后进行通讯。

取消

应用(法)

■ 18496
□ 18496

确定

对象 对象类型 Ox

无锡信捷电气股份有限公司

江苏省无锡市蠡园开发区滴翠路 100 号 创意产业园 7 号楼四楼 邮编: 214072 电话: 400-885-0136 传真: (0510) 85111290 网址: www.xinje.com

WUXI XINJE ELECTRIC CO., LTD.

4th Floor Building 7,Originality Industry park, Liyuan Development Zone, Wuxi City, Jiangsu Province 214072 Tel: 400-885-0136 Fax: (510) 85111290